
TRANS-
LATION
OF COM-
PUTATION
CONRAD WEISE
INTERMEDIATE I

BACHELOR INTEGRATED DESIGN

AREA OF EXPERTISE IAD
UNDER THE SUPERVISION OF
PROF. DR. LASSE SCHERFFIG

KÖLN INTERNATIONAL SCHOOL OF DESIGN
FACULTY OF CULTURAL STUDIES

CONTENTS

COMPUTATION	 5

OBJECTIVITY OF MATH	 9

COMPUTATIONAL THINKING	 13

HERMENEUTIC CIRCLE AND	

THE FALLACY OF INSTRUCTIVE INTERACTION	 19

REPRESENTATION	 25

MODELS	 35

SELF-REINFORCEMENT	 47

SAME DATA (SINGLE SOURCE OF TRUTH)	 55

MISSING VARIABLES AKA. PROXIES	 61

HARD-CODED	 69

CLASSIFYING A SPECTRUM AND	

THE PATTERN RECOGNITION OF HUMAN BIAS	 75

Computation is all around us. Since the breakthrough of mo-
dern integrated circuit technology, computation expanded
into every aspect of everyday life. Transistor sizes down to 7
nanometer enable computation to hide behind user interfaces
of all kinds, the internet creates a vast mesh of computatio-
nal networks that connect and govern over half of the world‘s
population, and companies chosen to bet on computation are
now the leading top of economical power (Bridle, 2018).
	 Computation is serving this platform of utter most power
to its instructionist, the software. Software is the determining
part of the computational equation. Its abstract symbol struc-
tures will guide the physical logic gates, which will inevitab-
ly result into a ripple of multiple electrical signals, deciding
about the final output of the computational equation. Whether
the final output is about displaying some trending tweets or
whether it is consulting a judge deciding about someone‘s pri-
son sentence; software is part of the equation and it is not only
part of it, but it constitutes most of it. Through the computa-
tional platform software has the essential scale and the neces-
sary flexible physical structure to be embedded into everyday
life. Instead of just being part of it, being the layer on top or
down under of the physical world, it has proven itself to be the
interwoven medium used to build the systems of the informa-
tion age of today. Its existence became essential to the western
modern life.
	 While computation (from now on as software and physical

5

COMPUTATION

COM-
PUTA-
TION

ARTICLE 01

COMPUTATIONTRANSLATION OF COMPUTATION

76

computation intertwined) decided more and more about hu-
man life, showing its increasing imprint in socio-political im-
plications and with progress in the area of Artificial Intelligen-
ce, it gained increasing attention from sociologists and media
theorists reflecting on the state of software in our societies.
With the breakthrough of machine learning and deep neural
networks and their immediate wide usage one particular phe-
nomenon was recently acknowledged more frequently:
	 Biased algorithms describe the appearance of discrimina-
tion and the reinforcement of prejudice connected to identity
constructs like race, ethnicity, sexuality, gender or culture in
computational systems. The concept of algorithmic bias rose
in popularity because of recent incidents of heavily biased ma-
chine learning algorithms (Lipton, 2016).
	 As we will see throughout the following articles, the idea
is that the problem of algorithmic bias is a more complex one
that shouldn‘t be simplified and limited to the discourse of
machine learning. Although machine learning brings its new
technical concepts with it, which shouldn’t be disregarded in
the analysis of bias, it is important to note that algorithmic
bias is rooted in software per se, not machine learning. Algo-
rithmic bias is a fundamental software problem. In recent con-
versations machine learning served as a catalyst and opaque
layer which enforced the bias and distracted most research
away from the actual underlying flaws of software develop-
ment.

To understand the implications of bias in machine learning it
is important to first look at the foundation of bias in traditio-
nal software.

The previously mentioned underlying computational platform,
on which software is building upon, can be reduced to elemen-
tary mathematics. The base component of modern computer
systems is the integrated circuit. It consists of numerous tran-
sistors, which form logic gates, being the main logic operator
serving the defined algorithms of the software. The transis-
tors in a logic gate essentially function as a switch, making
it possible to execute the most basic logical operations, like
NOT, AND, OR but also NAND, NOR, XOR, XNOR. Within the
computational platform, they serve as the fundamental imple-
mentation of software. From there on the complexity of logic
is as good as infinite. All complexity in modern computer sys-
tems is based upon and broken down in these basic operations
to be able to execute and understandable to the computational
platform (Sangosanya, Belton and Bigwood, 2005).
	 An algorithm defined in software is hard to generalize and
define, because of the concept’s wide diversity of usage. Ne-
vertheless an algorithm always defines given input data, de-
fines instructions on how to process that data, and produces
an output based on the given instructions. While algorithms
can easily exceed human comprehension in complexity, its ba-
sic structures are always the same and based upon the logical
operations of the underlying logic gates. In a simplified way,
looking at decision tree diagrams and the control flow of an
algorithm, every new stage of the algorithm results in a yes
or no answer based on specific statement, like IF and ELSE,

9

OBJECTIVITY OF MATH

OBJEC-
TIVI-

TY OF
MATH

ARTICLE 02

OBJECTIVITY OF MATHTRANSLATION OF COMPUTATION

1110

which are again represented in objective logical operations.
	 The nature of algorithms is objective math; and with that
goes the general assumption that computation has some kind
of privileged status of objectivity. That computer systems are
based on mathematical hard facts and therefore are free of
human prejudice or interpretation of any kind, blinded by the
mere assumption of the algorithm’s neutrality.
	 While a single logic operator is funded in objective math,
it is the constellation of them, which are inherently subjective.
The constellation of them is neatly curated by the human cre-
ator and with that every statement of the algorithm constitu-
tes a formalized representation of the creator’s environment,
views and prejudice.

Computers neither consider nor generate facts. They ma-

nipulate symbolic representations that some person gene-

rated on the belief that they corresponded to facts. (Wino-

grad and Flores, 1987, p. 136)

The following articles will serve as the foundation of the ana-
lysis and exploration on how these representations are being
implemented and where the human bias manifests itself in
computation.

For this and the following chapters I would like to introduce
the work of Terry Winograd and Fernando Flores Understan-
ding Computers and Cognition: A New Foundation for Design
from 1986. The book was published in a time when compu-
ters started to receive increasing attention from any kind of
business, institution or even individual consumers. Computer
systems were the new technology, which was promising to dri-
ve efficiency and profit forward. In the vast progress of these
new developments, Winograd and Flores proposed a new de-
sign approach, looking at the fundamentals of what it means to
create computational systems and how they and their implica-
tions fit into modern society. Actively criticizing the occurring
software development processes at the time. Their approach
was highly influenced by philosophical and phenomenological
discourses, which led them to an analysis of the core of how
human cognition and computation join forces in computer
systems.
	 While current development environments are layered
and layered by different code structures and codebases, and
with non-transparent machine learning techniques in mind,
Winograd and Flores ontological conceptual tools become an
essential part of the examination of algorithmic bias; a glan-
ce at how software’s concepts are actively shaping the way we
think.

Winograd and Flores open up their work by introducing the

13

COM-
PUTA-

TIONAL
THIN-
KING

ARTICLE 03

COMPUTATIONAL THINKING

COMPUTATIONAL THINKINGTRANSLATION OF COMPUTATION

1514

term rationalistic tradition. They use the word tradition in a
different context than usual. Winograd and Flores use it to
pinpoint that no question can be raised from a neutral or ob-
jective standpoint. They redefine the use of the word tradition
to a broader sense, more like a pre-understanding or a way of
being; more of a cultural background or way of thinking.
	 Their first important insight about the rationalistic tradi-
tion is that it has been the mainspring of western science and
technology. Especially the ones where principles can be captu-
red in formal systems. They state that it has greatly influenced
the development of linguistics and cognitive psychology and
define it further with listing a series of steps, which resemb-
le the rationalistic orientation. To the question “What do you
do when faced with some problem whose situation you care
about?” the solution process would be the following:

1.	 Characterize the situation in terms of identifiable ob-

jects with well-defined properties.

2.	 Find general rules that apply to situations in terms of

those objects and properties.

3.	 Apply the rules logically to the situation of concern,

drawing conclusions about what should be done.

(Winograd and Flores, 1987, p. 15)

Looking at this list it becomes apparent that problem-solving
procedures like the ones shown here are of fundamental na-
ture of business operations, scientific methods, and also soft-
ware development. Just like computation entered our daily
lives, the rationalistic formalization process was directly em-
bedded into it. Computation reinforced the rationalistic tradi-
tion into every aspect of modern life.
	 As we will see in the following articles, this list is a dan-
gerously simplified description of the world around us. Sepa-
rating the world into objects and non-objects and assigning
them properties or deciding to leave out specific properties
and then generalizing rules on top of them raises numerous
difficulties.
	 While Winograd and Flores showed high concern with the
wide implementations of the rationalistic tradition, looking at
contemporary literature, it seems that the rationalistic traditi-
on was just the beginning of a new way of thinking:
	 James Bridle, an artist and writer, published New Dark
Age: Technology and the End of the Future in 2018, where he
is describing his interpretation of computational thinking. Al-
though the term is used frequently in and originated in the
computer science industry, Bridle uses the term differently
and puts it into another context. Rather than seeing computa-
tional thinking as the concept of being able to abstract a pro-
blem and automate and analyse the solution, Bridle connotes
the term fairly negative and sceptic. He sees

COMPUTATIONAL THINKINGTRANSLATION OF COMPUTATION

1716

computational thinking [as] an extension [...to] solutio-

nism: the belief that any given problem can be solved by the

application of computation. (Bridle, 2018, p. 4)

and argues that

computational thinking is predominant in the world today,

driving the worst trends in our societies and interactions

[...]. (Bridle, 2018, p. 4)

Bridle goes as far as Winograd and Flores and describes it as a
way of thinking:

Computation replaces conscious thought. We think more

and more like the machine, or we do not think at all. (Brid-

le, 2018, p. 43)

Bridle’s computational thinking could be described as a highly
perverted version of the rationalistic tradition. Not only do we
see the world as a computational system, we actively constitu-
te it as one. Through computation, the rationalistic tradition
not only drives most of problem-solving disciplines from to-
day, but it became the only option we have.

To further expose the core of why the rationalistic tradition
aka. computational thinking poses as the killer of a fair and di-
verse world, this article will briefly introduce two conceptual
tools to explore the difficulties and fallacies of interpretation
in language and cognitive representation.
	 Hermeneutics was first and foremost the tool of under-
standing the meaning of mythical and religious text. It emer-
ged as a theory and later became applied science, nowadays
mostly camouflaged as analytics, because specific text pieces
would be understood differently each time they would be
re-read, realizing that the meaning of text is not absolute.
Although hermeneutics was also used to completely decont-
extualize text in the most objectivist sense, we will use herme-
neutics to take a closer look at how interpretation plays a vital
role in understanding.
	 In the discourse of how bias is defined in software, we find
appeal in the work of philosopher Hans-Georg Gadamer. In
his understanding of hermeneutics, interpretation plays a vital
role. It is the primary action taking place within the backg-
round provided by the reader and the background provided by
the writer. The writer and reader essentially join in an interac-
tion of understanding based on their pre-understanding of the
world. For him, in contrast to the objectivists, a text cannot
exist without a context and cannot be understood without re-
garding the context of reader and writer. For Gadamer

19

HERMENEUTIC CIRCLE AND
THE FALLACY OF INSTRUCTIVE INTERACTION

HERME-
NEUTIC

CIRCLE AND
THE FALLACY
OF INSTRUC-
TIVE INTER-

ACTION
ARTICLE 04

TRANSLATION OF COMPUTATION

2120

any individual, in understanding his or her world, is cont-

inually involved in activities of interpretation. (Winograd

and Flores, 1987, p. 28)

And just like in reading a text, these interpretations are ba-
sed on the pre-understanding of the individual, fundamentally
grounded in prejudice and bias. He argues that our pre-under-
standing and the connected prejudices and biases are inevita-
ble. It would be naive to think, that we can perceive a situation
with being fully aware of our pre-understanding. It is a funda-
mental part of being human to be blinded by our own backg-
round (Winograd and Flores, 1987).
	 The important insight I want to introduce, is the concept
of Gadamer‘s hermeneutic circle. With that he closes the loop
encapsulating the feedback loop of pre-understandings. Whi-
le I read a text, I can only understand it with my particular
background in time. However this background is just another
product of other interpretations I made before based on the
pre-understanding I possessed at that time.

What we understand is based on what we already know,

and what we already know comes from being able to under-

stand. (Winograd and Flores, 1987, p. 30)

To further look into the understanding of human perception,
the biologist Humberto Maturana presents very interesting

findings questioning the validity of common sense understan-
ding of biological cognition.
	 In the work “Anatomy and Physiology of Vision in the
Frog” (Maturana, Lettvin, McCulloch and Pitts, 1960) Ma-
turana, with three other biologist, first discovered and shed
light on the misconception of direct cognitive representations.
In this work they stated that the activity in the optic nerve of
a frog was not a direct representation of the light pattern on
the retina. As it turned out specific fibers, connected to the re-
tina, already took over specific cognitive processes. One type
of fiber, for example, responded best to flies, being triggered
by a small dark spot surrounded by light (Maturana, Lettvin,
McCulloch and Pitts, 1960).
	 With more research and revelations of that kind, Matura-
na went as far as calling it the fallacy of instructive interaction,
meaning that direct cognitive representation of our environ-
ments are a big misconception. Supporting the statement with
his concept of autopoiesis and structural coupling, describing
that human interaction with the environment is always hap-
pening through the entire nervous system. Changes that are
happening in the perceived environment are not represented
one by one in the nervous system. The interconnection bet-
ween perceiving and the saved state in the nervous system are
not representational.
	 With that in mind Winograd and Flores go on to counter
Maturana’s findings to the behaviorist approach to cognition,

HERMENEUTIC CIRCLE AND
THE FALLACY OF INSTRUCTIVE INTERACTION

TRANSLATION OF COMPUTATION

2322

stating that an organism behaves on the ground on external
stimuli. They decipher his argumentation as following:

Maturana [...] argues that we cannot deal with organism

and environment as two interacting independent things.

We cannot identify stimuli that exist independently of

the unity and talk about its history of responses to them.

The unity itself specifies the space in which it exists, and

in observing it we must use distinctions within that space.

(Winograd and Flores, 1987, p. 48)

While the digression into the topic of hermeneutics and co-
gnitive science doesn’t seem relatable to algorithmic bias, as
we will see in the following article, the described fallacies of
interpretation and cognitive representation are the foundation
within software development.

HERMENEUTIC CIRCLE AND
THE FALLACY OF INSTRUCTIVE INTERACTION

While programming languages started out to be very close to
actual machine code, being 1s and 0s, which the boolean logic
gates could directly interpret, programming languages no-
wadays oriented themselves through concepts like object ori-
ented- and functional programming towards written langua-
ge. So called high-level languages are closer to English than to
machine code. Although it seems like the implementation of
high-level programming languages orients itself away from its
computational origin, it is important to note that it is just ano-
ther abstraction sitting on top of the highly rational structure
of computation.
	 Nevertheless, software can and should be treated as lan-
guage to fully understand its affiliation with hermeneutics.
Not to forget, that in practice, writing software is an inhe-
rently social activity. Humans write code for humans. Within
contemporary software development, codebases are managed
by numerous programmers at the same time. They engage
in a conversation of formalized views of the world, being in
constant flux of their interpretations and cognitive represen-
tations. Reading code becomes an essential part of software
development and with that also the interpretation and under-
standing of it. But not only are the hermeneutic problems limi-
ted to the literal reading process of code.
	 A general procedure of the construction process of a com-
puter program needs to be detailed:

25

REPRE-
SENTA-
TION

ARTICLE 05

REPRESENTATION

TRANSLATION OF COMPUTATION

2726

1.	 Interpretation and observation of the situation

2.	 Formalization and definition of its objects, properties and
operations

3.	 Representation and implementation into computable code

First, the programmer needs to observe the given situation
and deduce what is relevant for the problem at hand. These
observations lead to the interpretation of the programmer
which propagates through all other steps of the process. Se-
condly, the programmer goes on to formalize the relevant fin-
dings based on the previous observation and interpretation.
Because of the rational symbolic nature of computation they
must be defined as very specific rules. This definition consists
of objects and the corresponding properties of the environ-
ment. Interconnecting them with operations which act upon
the specified objects. Lastly, the programmer implements this
formalization as a representation into code. This representa-
tion can look quite differently on the surface, depending on
computer architecture and choice of programming language,
but will always represent the underlying formalization as ela-
borated in the second stage.

Writing software is the act of formalizing the external world
around us into abstract symbolic structures. It is the interpre-

tation of the world into code, while cognitive representations
are happening at every stage of it. The programmer enacts a
very political action with writing software and is doing so with
the limitations of the given background, being the pre-under-
standing and cognitive representations of the world. Winograd
and Flores call this the “phenomenon of blindness”, building
upon the terminology of the philosopher Martin Heidegger.
	 Heidegger combines Gadamer’s and Maturana’s thinking
into his analysis of the world, profoundly questioning the rati-
onalistic tradition and its core ontology. Just like Gadamer and
Maturana, Heidegger rejected the separation of an objective
physical reality and a subjective mental world or the possibi-
lity to describe an external “real world”. Important for us to
understand are parts of Heidegger‘s thrownness (Dasein) and
readiness-to-hand (Zuhandenheit).
	 Thrownness argues that we are, independent of our will,
thrown into situations. Even if we decide to leave the situati-
on or to not take part in it, they are inherently decisions and
determined actions. Just like we cannot, not communicate; we
cannot, not act. Plus, these inevitable actions are not directly
perceivable to us. If we try to take a step back to reflect on the
situation, we are blind to specific parts of it, which are there-
fore not perceivable and with that not part of the observation
(Critchley, 2009). It is closely related to Maturana’s findings of
direct representations. The same way the nervous system does
not represent a direct representational state of a perceived si-

REPRESENTATION

TRANSLATION OF COMPUTATION

2928

tuation, we can only reflect with our thrownness on it as such.
There is no stable representation of a given situation. Looking
at hermeneutics and its background of pre-understanding, we
can move from the understanding of text, to the understan-
ding of a situation and argue that a given situation cannot be
perceived at without the context of interpretation and pre-un-
derstanding. Every representation which occurs in a situation,
will have fundamentally different interpretations.
	 Closely related to the concept of thrownness Heidegger
introduces another term called readiness-to-hand, with his in/
famous example of hammering. He states that a person who is
using a hammer, and is in the act of hammering, is actually not
perceiving the hammer. For the person using it, the hammer is
not identified as an object; the hammer doesn’t exist as such.
Rather it exists in the unconscious readiness-to-hand back-
ground. According to Heidegger the hammer itself becomes
only perceivable as an actual object, when there is some kind
of breaking down or unreadiness-to-hand occurring (Royle,
2018). Just like the hammer having a loose head, and with that
becoming present-at-hand, is only perceivable as such in that
situation, the inevitable thrownness of a situation puts us into
a state of blindness. As a supposedly observer, we can see a gi-
ven situation as an object and maybe reflect on its properties,
but for the person being in the thrownness of the situation
it is concealed and not identifiable as such. Thrownness and
breaking down exists and shapes differently for every person

being part of a situation, being closely related to their pre-un-
derstanding and the hermeneutic circle.
	 With the concept of thrownness and readiness-to-hand,
Heidegger inevitably describes the cognitive representation
and hermeneutic fallacies and transfers them into everyday
life.

Winograd and Flores concept of the “phenomenon of blind-
ness”, describes the previous ontological approaches and maps
them into the environment of software development. Let us
look at the translation of computation again to see, where this
particular blindness takes places.

Interpretation and observation of the situation is the most cri-
tical and controversial stage from an ontological point of view.
The observations and interpretations made in this step are
very subjective to the programmer. They are based on the her-
meneutic pre-understanding and are inherently not free from
any prejudice. The programmer is inevitably engaged into Hei-
degger’s thrownness, while trying to define a situation from an
observer‘s standpoint, making it impossible to reflect fully on
it. This stage serves as the utter most restricting as it decides
about inclusion and exclusion of the consecutive computati-
onal equation. It determines who or what will be computed.

To acquire an awareness of a situation is, however, always a

REPRESENTATION

TRANSLATION OF COMPUTATION

3130

task of particular difficulty. The very idea of a situation me-

ans that we are not standing outside it and hence are unable

to have any objective knowledge of it. We are always within

the situation, and to throw light on it is a task that is never

entirely completed. This is true also of the hermeneutic si-

tuation, i.e., the situation in which we find ourselves with

regard to the tradition that we are trying to understand.

The illumination of this situation—effective-historical re-

flection—can never be completely achieved, but this is not

due to a lack of reflection, but lies in the essence of the his-

torical being which is ours. To exist historically means that

knowledge of oneself can never be complete. (Gadamer,

1975, p. 268)

Formalization and definition of its objects, properties and
operations is the embodiment of the rationalistic tradition
and computational thinking. While having a set interpretati-
on present at hand (and present-at-hand), it needs to be even
more simplified to be computable. At this stage further ma-
nipulations can happen, because of their rational nature they
have to be formalized into. Not only the definition of an object
with its properties serves as a highly complex task, the forma-
lization limits the available possibilities by a great extend.

In this way, computation does not merely govern our ac-

tions in the present, but constructs a future that best fits its

parameters. That which is possible becomes that which is

computable. That which is hard to quantify and difficult to

model, that which has not been seen before or which is un-

certain or ambiguous, is excluded from the field of possible

futures. (Bridle, 2018, p. 44)

Representation and implementation into computable code is
the stage that concludes the perpetual state of the interpre-
tation. At this stage the formalized interpretations are being
implemented as direct representations. While direct represen-
tations are a fallacy of our understanding of human cogniti-
on, they are very real in the space of software development.
With them every software program serves a very concrete re-
presentation of the interpretations and formalizations of the
programmer’s view on the given situation. It encapsulates the
representations no matter what the implementation environ-
ment might be. During the implementation of the computable
code the representation will happen, regardless of having any
concrete concept of its executing environment. Code will exe-
cute. It only cares about its given representational state.

In writing a computer program, the programmer is respon-

sible for characterizing the task domain as a collection of

objects, properties, and operations, and for formulating the

task as a structure of goals in therms of these. Obviously,

this is not a matter of free choice. The programmer acts

REPRESENTATION

TRANSLATION OF COMPUTATION

3332

within a context of language, culture, and previous under-

standing, both shared and personal. The program is forever

limited to working within the world determined by the pro-

grammer’s explicit articulation of possible objects, proper-

ties, and relations among them. It therefore embodies the

blindness that goes with this articulation. (Winograd and

Flores, 1987, p. 97)

With these concepts in mind, the programmer enacts a very
disturbingly political action in writing software. It became
apparent that the algorithmic bias is a very complex pheno-
menon and that it is a fundamental inevitable part of writing
software, directly connected to the human writing it. It is cru-
cial to move away from talking about objective or neutral al-
gorithms and instead start expecting bias; instead of talking
about facts, we have to start talking about interpretations.

REPRESENTATION

Having looked at how bias lives in software per se, it is time
to go back and join the discourse of algorithmic bias in ma-
chine learning. Exploring how to locate our previous findings
in the field of machine learning. Machine learning is based on
the concept of models, and with that it is closely related to the
concept of cognitive representations. Fetching the english spe-
aking wikipedia.com page with the search parameter “Model”,
a quick search for the term “representation” shows an alleged-
ly consensus on the definition of a model. Representations are
the essence of modelling. It doesn’t matter in what discourse,
field of study or industry it is defined; ultimately, a model is no-
thing more than an abstract representation of a given process.
Whether it be about Amazon’s fulfillment center supply chain,
the bug fixes of REWE’s new cashierless systems or the mere
idea of your next meal. Models are everywhere and they don’t
always need to be in the form of computational code.
	 Being in the world of models and coming from cogniti-
ve representations, like we know them from Maturana and
Heidegger, computer science started to treat the mind like a
computational device. The field would talk about cognitive
computation, different processors for vision and haptic, and
different states of memory, declaring the early days of already
successfully reinforced computational thinking. To figure out
how humans understand and interact with computers, it see-
med the most plausible idea, to also be able to deal with the
incoming feedback by the human operator of the information

35

MO-
DELS

ARTICLE 06

MODELS

TRANSLATION OF COMPUTATION

3736

system. While we know the difficulties of that idea, we are in
the middle of the vice versa process, which of course has the
same kind of problems. Nowadays we are trying to model the
brain into the machine; generating computable models.
	 In the field of machine learning, the architecture of sta-
te-of-the-art models is based on the neural networks of our
brains; at least on our current understanding of them. To fully
understand how and where bias enters the process in machine
learning, and to compare the differences to previously discus-
sed forms of bias, we have to understand its technicalities and
alter the translation of computation accordingly.
	 Just like an ordinary software algorithm, computational
models feed from a specific set of inputs to generate a specific
set of outputs based on rules. The main difference between
an algorithm and a model is that the model’s outputs are pre-
dictions. Predictions based on an internal generated algorithm
based on the given input. To put it simply, a model is a repla-
cement of the formalization, hence the rules, of an algorithm.
We do this because defining specific formulations is hard. The
idea is that we want to give the model some inputs and the
correlating outputs; whereupon the model starts and learns
the rules, so that when it is given some new never before seen
inputs, it can create reasonable outputs, based on the fed in
data by itself. But what are these inputs and outputs that defi-
ne the model? In the field of so-called supervised learning, the
programmer has to provide a dataset, resembling the inputs

and outputs that want to be achieved. The dataset that is fed
into the model is crucial. It serves as training and testing data
to shape the internal formalizations of the model.
	 Imagine a situation where the task would be as banal to
write an algorithm that could distinguish cats from dogs. At
first sight the problem might seem simple, but having a clo-
ser look at the rational formalized nature of algorithms, how
do you define how a cat or a dog looks like and how do you
define that input data? The first step would be to choose a me-
dium, which would resemble cats and dogs, which the compu-
ter could interpret. Let’s go with simple RGB images for now.
They are handy, because they are easy to handle and already
exist as formalized lists of bits and bytes aka. pixels, ready for
the computer to read. So to re-define our algorithm: It is a clas-
sification of cat and dog images. Maybe not exactly what we
wanted, maybe the initial solution would have been better to
distinguish them in smell or sounds and not visual appearan-
ce.
	 Having that set we would start writing an image proces-
sing algorithm, which would take the pixels of an image as in-
put and output a string of “cat” or “dog”, to tell us the class of
the image. The internal formalization of the interpretation of
cats and dogs, would maybe look as the following: If, in this
grid of 9x9 pixels, the contrast between darker and lighter pi-
xels form a more triangular shape, it could possibly be a cat
ear, but only if it is close to the other 9x9 grid, which resembles

MODELS

TRANSLATION OF COMPUTATION

3938

a part of a more circular looking shape, possibly being the start
of a cats head. For the dog we would possibly go and look for a
more upright posture or a longer snout with a more roundish
looking nose. But what about dogs with triangular ears or cats
that happen to walk upright? These classifications within the
algorithm, being “small snout”, “triangular ear”, “long leg”, all
representing a different arrangement of pixels, are called fea-
tures; and it is almost impossible to get them right.
	 But this is exactly where supervised learning within ar-
tificial neural networks comes into place. We would not for-
malize these features ourselves, but let the model figure them
out for us. We would train the model, based on the dataset
we provide for it. So back to the images of cats and dogs. All
we would have to do is to get a large amount of images and
label them accordingly as “cat” or “dog”. The dataset would
be a collection of data points consisting out of an image, also
often referred to as the x value, and the corresponding label,
being y. But where would we gather the images from? We could
shoot some ourselves, to have full control over how the images
would come out, but what exactly are we going for? Landscape
or portrait, what kind of background, being still or being in
action, inside our outside, more focused on the face or on the
body statue? And most importantly, what kind of breeds would
that include in our dataset? Making the pictures by ourselves
gives us great control over the appearance of the picture, but
we will probably only have a very limited amount of data to

work with. The common solution is the internet, serving as a
vast collection of free to access data.
	 But what images will Google Image Search or Facebook
really serve us? Several algorithms are already behind what
the platforms are showing us. Adding another layer of poten-
tial bias would limit our process of gathering representational
training data. All these decisions would lead to a different ar-
rangement of pixels for the model to train upon, hence resul-
ting into different features the model will predict with. But
let’s pretend we managed to gather a relatively representati-
onal dataset of cats and dogs. Maybe we did it all by oursel-
ves in the end, which by no means implies less bias, just more
controllable bias. We would continue with the step of labeling
our data, hence our pictures of cats and dogs. The potential
problems with that are clear by now. Who or what is doing the
labeling?
	 How specific do we want to be? Just two labels or maybe
a label for different breeds? But what about cross-breeds then?
Again pretending we made the right decisions for our specific
use case, going for the sake of simplicity with just “cat” and
“dog”, we are ready to so-called fit our model. Fitting the mo-
del is divided into a training and validation process. The mo-
del is training with a specific part of the dataset and after a
given time it uses the other part of the dataset to validate its
predictions. In the beginning the model will guess completely
randomly if an incoming picture is a cat or a dog. At that point

MODELS

TRANSLATION OF COMPUTATION

4140

the model can calculate an error, because of our given supervi-
sed dataset. After each guess the model knows whether it was
right or wrong and some validation epochs in, the model will
start to recognize patterns in the data, hence our features we
tried to manually describe before. Each feature describing a
part of what it means to look like a cat or a dog.
	 The model keeps track of how much percentage a speci-
fic feature makes up to be an image of a cat or dog and after
enough training, the model has a formalization of the specific
features and their corresponding importance, representing
our dataset. The model can be shown a completely new pic-
ture, which was not in the dataset before, and can predict with
what percentage it recognizes a cat or dog. It can predict with
what percentage the formalized feature list matches the featu-
res it can extract out of the given image. At this moment it is
not easily comprehensible anymore what kind of features the
model actually picked upon to be important for a given classifi-
cation, but it is only working in the domain of our dataset that
we gave it access to.
	 To compare it to the translation of computation, machine
learning still embodies major parts of it. With the introducti-
on of machine learning, a major part of the formalization stage
might be replaced, but the inherent bias of the interpretation
and representation are still binding and certainly present. The
selection of data still resembles a very specific interpretation
of the creator and raises completely new questions to be ans-

wered.
	 After the training process the model and its predictions
are still set in stone, affecting the environment of implementa-
tion in the same way; and with that bias now camouflages itself
even more behind the rationalistic nature of computation.

Models are opinions embedded in mathematics. (O’Neil,

2017, p. 21)

To give a concrete example of how these models are already
implemented in our world and don’t just affect our little side
project of the classification of cats and dogs, I want to intro-
duce the work of Cathy O’Neil. She worked as a math professor
and left academia to work as a data scientist in finance and in
e-commerce, actively being a part of the leading industries of
computational models. Gaining increasingly insight into the
nature of computational thinking and experiencing the 2008
financial crisis first hand, she realized the flawed parts of the
system she was working in. In 2011 she started her blog math-
babe.org and in 2017 published her book “Weapons of Math
Destruction: How Big Data Increases Inequality and Threa-
tens Democracy” to spread the word about her research on the
topic of algorithmic bias. Regarding this work, her book serves
as an archive of flawed models, coming from first hand experi-
ences and thorough research.
	 Let me walk you through the story of a model, which

MODELS

TRANSLATION OF COMPUTATION

4342

was designed to better Washington, D.C.’s underperforming
schools to explain the direct impact on human life through
modeled algorithms. Not to spoil: The model ended up a cata-
strophe, leading to undeserved job losses and excessive rise in
fraud.
	 The process started with the false and overly rushed as-
sumption that when students of a school are not performing
well enough, apparently the teachers were not doing their job
right. The newly hired chancellor of Washington’s schools de-
fined the plan of the new solution. With the model’s objective
set, being the evaluation of teachers, the teacher assessment
software called IMPACT was developed. It would filter out the
bottom two percent recieving the worst scores. Although the
fifth-grade teacher Sarah Wysocki received overwhelmingly
good feedback from the parents of the class, she was fired ba-
sed on the evaluation of the algorithm. The new value-added
method of the model would judge her effectiveness in teaching
math and languages and the scores would be combined with
the ratings of the community. Despite the positive ratings
of the community, the score was not high enough for her to
withdraw from the high influence of the model. IMPACT had
such a high influence on the overall score, because the creators
wanted to eliminate human prejudice. They argued that the
community could be biased in favor of Wysocki, because of
social connections or friends in high positions, which had no-
thing to do with her teaching skills.

So Washington, like many other school systems, would

minimize this human bias and pay more attention to sco-

res based on hard results: achievement scores in math and

reading. The numbers would speak clearly, district officials

promised. They would be more fair. (O’Neil, 2017, p. 5)

This is a very typical phenomenon happening in the defense of
computational models. The arguments always go in the direc-
tion of wanting to eliminate human bias with turning to “hard
results”. But the fallacy, as we know, is that the elimination
of the human-in-the-loop just passes on the bias to the com-
putational formalization, serving camouflaged bias in mathe-
matics. Bias that is hidden inside the equations of the external
model, only perceivable to the elite of the 21st century: mathe-
maticians, data scientists and software engineers.

With probably similar thoughts in her mind, Wysocki wanted
to know how the scores would actually be evaluated and how
the value-added method was defined. She figured out, like it is
so often the case, that the district had hired an external data
science consultancy; in this case Princeton based Mathemati-
ca Policy Research. The value-added model would compare
current test results against the results of the previous year ta-
ken by the same student. Like this, only comparing scores of
the same students, the scores should be freed from any social
status privilege and not be based on some general, global score

MODELS

TRANSLATION OF COMPUTATION

4544

average. While this approach definitely goes in the right direc-
tion of attempted fairness, the question of the teachers part in
the computational equation still remains. How much of a po-
tential score decline can you actually associate to the teacher?
Wysocki expressed herself stating that

There are so many factors that go into learning and tea-

ching that it would be very difficult to measure them all.

(O’Neil, 2017, p. 6)

And of course Wysocki completely got it right here. Because
of the model’s inherent nature of the computational platform
and interpretations in the selection of the data, they are by
definition generalizations and simplifications. If you are the
exception of the dataset; the so-called noise that doesn’t fit
into the non-linearly separable function, you will get sorted
out. As these generalized models decide more and more about
our direct lives, they serve as a big threat to minorities and
marginalized groups not fitting into generalizations.

As we cannot be certain on how big and diverse the dataset
was that Mathematica Policy Research used for their model, a
major problem could have been the amount of available data.
Big Data companies like Facebook, Google, Amazon and co.
models are trained on datasets with data points reaching into
the 100 millions (Metz, 2012). Which of course also doesn’t

guarantee any correctness of a model, but the amount of data
is definitely a big part of it. Formalization take time and fin-
ding features is hard. A certain size of the dataset is a must to
provide the model with enough variety to recognize patterns.
In the environment of this specific model, we are dealing with
classes of maximum thirty students, which results in thirty
scores aka. thirty data points and this is just not enough to do
serious analytics. Even if IMPACT was trained with data of
several schools, the quality of the predictions are still highly
questionable. In situations like this already existing models
are often reused as so-called pre-trained models...

MODELS

A pre-trained model is a model which was already trained and
is ready to predict; a kind of plug-and-play situation. It is a
common procedure when the internal classification is simil-
ar to the needed classification at hand. Especially when not
much data is present this procedure is preferred. They serve
as a counterfeit advance to have higher confidence values in
the model’s predictions right from the beginning of usage. The
problem with pre-trained models is that they were trained and
defined in a completely different environment than they are
implemented. Just like in the representation and implemen-
tation stage of the translation of computation, without an up-
date the model stays in the pre-trained state, never adapting to
the new environment it is functioning in. Probably predicting
on some data that has not much in common with the data that
would be found in the situation at hand.
	 In the case of Washington’s schools, the model never fi-
gured out if it was right or wrong. It never got to update its
pre-trained state. All the model did was evaluating teachers
without ever getting feedback on its predictions. Like it is
common with many implemented models, the training process
stopped at the most important step. Actually re-evaluating the
models predictions with a human to oversight it (O’Neil, 2017).
But in this case the model predicted away and all years long
the predictions were executed. The model’s will carried out
and with that it was defining its own reality. A reality where
the predicted score is the single source of truth.

47

SELF-REIN-
FORCE-
MENT

ARTICLE 07

SELF-REINFORCEMENT

TRANSLATION OF COMPUTATION

4948

As it turned out, in the example of the value-added model,
people also understood this mechanism and started exploiting
it. Investigations by the Washington Post and USA Today later
found out that many of the standardized tests were fabricated.
Not by the students, but by their teachers. The teachers knew
that higher scores of their students would prevent them from
being fired (O’Neil, 2017). Knowing that there are only a few
variables defining their future, they started to play along in the
reality of the model. The reality of the model leaked into ours,
actively manipulating how people would behave. This scheme
of computational thinking sits at the core of today’s realities,
highly influenced by how computers work. With the adaption
of our thinking, we start to embody the model. Reinforcing
its predictions into our lives. Onto our believes, onto our in-
tentions and onto our behaviour. The model has the ability to
self-reinforce itself through us.

Sarah Wysocki was sure that the fabricated scores were the
reason for her misclassification. At the time of the low assigned
score she was teaching first year students of a middle school.
Her suspicion was that the scores of the last year’s elemen-
tary school were inflated before, so when the student’s new
tests were fed into the value-added model, it would predict a
bigger score gap. Unfortunately she was not coming close to
the real truth why the model behaved the way it did. In her in-
vestigation the school district could only give very vague ans-

wers, mostly referring to the “hard results” of its outsourced
solution (O’Neil, 2017). But for Mathematica Policy Research
it was nothing more than a shipped product. The model was
never updated to deal with the actual data in its implemented
environment. It is common that anti-procedures of obvious al-
gorithmic bias take place like this. The actual affected human
being, most of the time being the exception in the dataset, is
taking action against an algorithm, but in our information age
it is not easy to appeal against a system based on “objective”
math. As an emotional human being, there is no chance to ap-
peal against a system grounded in the rationalistic tradition.

The rationalistic orientation not only underlies both pure

and applied science but is also regarded, perhaps because of

the prestige and success that modern science enjoys, as the

very paradigm of what it means to think and be intelligent.

(Winograd and Flores, 1987, p. 16)

As long as the rationalistic tradition is the dominant way of
how we think and treat each other, systems like IMPACT will
not be held accountable for their actions. They will not even
be looked at as a possible source of unfairness and discrimina-
tion. They will stay camouflaged and continue hiding behind
the guardance of computational thinking.

Sarah Wysocki never got a justified answer that would explain

SELF-REINFORCEMENT

TRANSLATION OF COMPUTATION

5150

the algorithm’s decisions or why she lost her job (O’Neil, 2017).

To give another example of how models reinforce their beliefs
into various fields of our societies, I want to display the in/fa-
mous phenomenon of predictive policing. Predictive policing
programs emerged out of the Big Data field and are now, since
several years, in great use all over the world (Friend, 2013).
These crime prediction systems also mark machine learning
as their main tool of success. The models use historical crime
data as their input data and with that their predictions show
where future crimes would most likely going to take place. Al-
though reports show a decline in property crimes and in parti-
cular burglaries, the question of “historical crime” interpreta-
tions arises (O’Neil, 2017). What exactly is the model looking
at? And what are the implementation consequences? Who acts
upon the calculated predictions?
	 In the specific example of PredPol, the self-acclaimed
market leader in predictive policing, product owners have a
choice on what kind of crimes to focus on, hence what kind
of crime data will fill the dataset. In a freshly installed sys-
tem the software asks to also include so-called “Part 2” cri-
mes, being vagrancy, aggressive panhandling and selling, and
consuming small quantities of drugs. While the system mostly
works effective with “Part 1” crimes, being more severe cri-
mes like homicide, assault or burglary, the system’s fairness
starts to descent with the inclusion of “Part 2” crimes, led by

the “broken-windows” policing theory. The theory goes that
environments, which look more careless or less maintained,
hence the broken windows, would serve as a ground for more
severe crimes. A house with a broken window would invite
burglars. So people started to fix broken windows and to take
more care of their environment. Unfortunately the movement
eventually led to zero-tolerance campaigns, where police of-
ficers would stop and arrest low-level crimes, filling U.S. pri-
sons with numerous people convicted with victimless crimes
(O’Neil, 2017).
	 Back to PredPol, the software works with the Google Maps
web interface, displaying its predictions as 150 m2 boxes with
red borders signaling high-risk areas. These areas resemble
the area where a crime is most likely going to happen, so police
officers are instructed to patrol these areas more often. With
the “Part 2” crimes feature activated, neighborhoods of low-le-
vel crimes are becoming the hot-spots for patrolling. So when
the police officer visits the predicted area and sees teenagers
sharing a joint on the street or any other low-level, victimless
crime, the officer will stop them. With that PredPol’s cloud
would spin up and start evaluating the new captured data,
which of course would be evaluated as a success, because the
new location data point of the new crime would match within
the predicted red bordered box. So the model would update
its “patrol heat maps”, sending more patrols to the same area
again leading to more reported crimes of that neighbourhood,

SELF-REINFORCEMENT

TRANSLATION OF COMPUTATION

5352

resembling another vicious self-reinforcement mechanism.

The policing itself spawns new data, which justifies more

policing. (O’Neil, 2017, p. 87)

But what about the question of the dataset? Where is the cri-
me data coming from and on what interpretations are these
models build upon? In the example of PredPol, the model is
fed with the data points from the specific agency’s records ma-
nagement system (RMS). This system is a vast collection aka.
database of previously filed crimes of the police department or
district. A collection which resembles the numerous interpre-
tations of police officer from the past. Our models which are
predicting and enforcing the future we will live in are based on
interpretations from the past. And we all know that there are
major parts of the history of our societies we wouldn’t like to
repeat. The racist and discriminating past of police policing is
one of them.

SELF-REINFORCEMENT

But when did we start to predict the future based on computa-
tional systems? We always wanted to look into the future and
computational systems looked like promising help. In 1922,
computers as we know them today didn’t exist, but their ar-
chitecture and computational power were already dreamed of.
In his writing “Weather Prediction by Numerical Process” the
mathematician Lewis Fry Richardson made first attempts to
compute the future. He did so by dividing the world into squa-
res and data points, trying to predict the weather with pen and
paper. His six-hour forecast would take six weeks to complete.
But to look into the future of the weather, calculations would
have to be faster than the actual forecasting period. Eventu-
ally starting a race against time, trying to predict the future
faster than it would arrive.
	 But with models from today in mind, did we really just
want to look into the future? Or did we strive for control? Com-
putational systems have that control now, constructing future
through the use of predictions, which are based on the past.
With the use of historical data we are reinforcing the past, le-
aving no room for change. We are actively assuming that the
past will linearly continue to be the future; without regarding
that the future might have a different course than the past and
without regarding that the future might have different values
than the past. Computation blurred the lines between past and
future, creating the most vicious feedback loop in the age of
computation; the way things are will be the way things will be.

55

SAME DATA
(SINGLE
SOURCE

OF TRUTH)
ARTICLE 08

SAME DATA (SINGLE SOURCE OF TRUTH)

TRANSLATION OF COMPUTATION

5756

Because mathematical models, by their nature, are based on

the past, and on the assumption that patterns will repeat.

(O’Neil, 2017, p. 38)

In this way, computation does not merely govern our ac-

tions in the present, but constructs a future that best fits its

parameters. That which is possible becomes that which is

computable. (Bridle, 2018, p. 44)

And is this really what we should be striving for? In the ex-
ample of PredPol and predictive policing the only computa-
ble data available was based on the previously cited crimes,
which resembled a vast collection out of interpretations and
observations from various police officers on patrol. And these
observations were anything but fair and unbiased. Our past is
inherently discriminating and we don‘t want that these discri-
minating patterns are reinforced into our future.
	 Staying with the example of predictive policing, a majori-
ty of the collected patrolling data was based on the so-called
stop-and-frisk method. “Stop, question, and frisk” was one
one the major anti crime policies of the New York City Police
Department. The concept was the following: the more people
you stop, the more crimes you can prevent. The idea was sim-
ple: police officers stopped anyone that looked suspicious to
them. They asked for their ID and frisked them. The number of
stops went up by 600 percent. And with the statistics showing

a decline in crime, it was called a success. But an efficient sys-
tem is not always fair. The policy was later described as une-
ven policing, pushing more minorities into the criminal justice
system. The administration, the method was running under,
was sued by the New York Civil Liberties Union, charging the
stop-and-frisk policy as being racist (O’Neil, 2017).
	 Taking a look at the dataset of the policy, which is publicly
available on NYPD‘s website. For the year 2018, the dataset
lists 11.009 stops in total, from which only 1.074 were of white
people (New York City Police Department, 2019).
	 Continuing with the racist history of failed systems, let‘s
take a look at computer vision systems. In the movie industry
around the 1960s Kodak films were widely used and resemb-
led the industry standard at that time. Unfortunately the films
were designed for people of white skin color, because the model
posing for the Kodak test cards, which were used to calibrate
the color films, happened to be white. The films were unusable
for working with darker skinned people. The pictures would
always turn out to be under-exposed. The most ironic part is
that Kodak didn’t change their calibration methods. Kodak
just didn’t update their model to work with darker tones. But
when complaints, not being able to photograph chocolate or
dark horses, were filed, only then Kodak reacted (Pater, 2016).
Another rather troublesome example is when Google‘s Photo
app image classification algorithm failed and labeled two black
people as “Gorillas” (@jackyalcine, 2015). In June 2015 @ja-

SAME DATA (SINGLE SOURCE OF TRUTH)

TRANSLATION OF COMPUTATION

5958

ckyalcine tweeted about the incident, but all what Google did
was to remove gorillas altogether from its model (Simonite,
2018). More precisely, until this day (05.03.2019) Google still
blocks all search queries for the tags “gorilla”, “chimp”, “chim-
panzee”, or “monkey” in its Photo app. Just because the pre-
trained model is not being updated; since almost 4 years now.
Behind the app sits most probably the wide spread ImageNet
dataset. ImageNet is an academic dataset, which provides a
numerous set of images according to the labels of a database
called WordNet. For each “synonym set” of WordNet, Image-
Net tries to provide an average of 1000 images. Browsing the
explorer on the dataset’s website, taking a closer look at the
node “People”, quickly shows the deficiency of black people,
which is not representational and most probably leading to the
misclassification of Google’s Photo app (ImageNet, 2019).

The phenomenon of automation bias shows a repeating pat-
tern, which can be observed in the use of computational sys-
tems. Again tightly connected to computational thinking, au-
tomation bias describes our unconditional love and trust in
computational systems. In the national park in Death Valley,
rangers came up with the term “Death by GPS”, because the
event of people following the blue route until their death was
occurring again and again. It might seem implausible, but the
trust we have in our everyday algorithms, is astonishingly
high. Another incident happened when a tourist group drove

their car into a lake, because the navigation system told them
too (Bridle, 2018).
	 Whether it is the dataset, the model, the app, or the blue
route, we treat every stage of the design of computational sys-
tems as the single source of truth, resulting in an inevitable
cascading waterfall of unpredictable bias.

The problem is not only in the semantic bias of the data set,

but also in the design of the algorithm that treats the data

as unbiased fact, and finally in the users of the computer

program who believe in its scientific objectivity. (Cramer,

2019, p. 33)

We build these highly optimized systems, but the underlying
foundation is again and again disregarded. The same is hap-
pening in the discourse of algorithmic bias and machine lear-
ning. Most of the biases are not a new phenomenon of machine
learning, they are inherently rooted in software development.
The data that we feed our systems with is not looked at enough,
and as we know from the translation of computation its the
most crucial step, where all interpretations and observations
take place.

SAME DATA (SINGLE SOURCE OF TRUTH)

The story of the missing variable is an important one. As we
know by now, the interpretation and observation question of
what to include in a software model is crucial. Because of ma-
chine learning’s nature to be divided into several parts, being
data mining, dataset normalization, dataset implementation,
model definition etc., the significance of it is increased by a
great deal. Interpretations are happening at every stage of the
process, making it an opaque assemblage of potential biases.
It is not only the bias that is actively embodied in the dataset,
but also the exclusion of information, which shapes the bias. A
transparent documentation of inclusion and exclusion beco-
mes necessary.
	 With that in mind it is necessary to look at the variables
which were left out of the process. Although a data point was
not included in a dataset, it can be of great significance for the
model’s predictions. So in a sense a missing variable is never-
theless included into the model. The data point still exists in
the real world, whether it was included in the model or not,
and with that the model will have implications on it. And most
of the times it is exactly that variable, which was chosen to be
left out of the computational equation, that shows the most
significant implications in the case of a breakdown.
	 In the case of Google’s Photo app, this is exactly what
happened. The representation of people in the model’s dataset
was not diverse enough. Black people were chosen to be the
missing variable. And of course they were the most affected

61

MISSING
VARIAB-
LES AKA.
PROXIES

ARTICLE 09

MISSING VARIABLES AKA. PROXIES

TRANSLATION OF COMPUTATION

6362

ones by the incident. The unfortunate part from Google was
that they didn’t fix the diversity of the dataset, but they went
with deleting the misclassified labels, which just led to more
exclusion and bias in the model.

While this explanation seems quite obvious, it is not that sim-
ple from the software developer’s point of view. It is always
easy to see what is in front of you, hence what is being inclu-
ded into a system. Being decidedly critical with the situation at
hand, to detect important variables which are being excluded
from the observation and implementation, is hard. But bias
will exist, whether it is intentional or unintentional.
	 In statistics the intentional implementation of stand-in
data, hence to substitute missing data points, are so-called
proxies (O’Neil, 2017). In the development of models the ac-
tual interesting data is often missing, so the creators have to
find a substitute for them. Other more accessible data points
are looked for, which could resemble the actual desired varia-
ble, and are used to describe the new artificially created proxy.
Proxies serve as a difficulty for the correctness and fairness of
a model, since they add another layer of interpretation to the
creation of the computational system. Proxies are by their very
definition a short-cut or the easy way out, since they serve as
a simplification of a part of the world which could not be mea-
sured or defined easily. And later in the process of evaluating
the model or updating it, the proxy variables are hard to spot

and redefine, since they are treated as usual variables in the
model’s predictions. The model’s predictions which are based
on an artificial extrapolation of the world around us.

Looking back at the example of Sarah Wysocki, it is clear what
damage the implemented proxies did. A whole ability to teach
students was reduced to a single score. The creators of the mo-
del just didn’t have the resources to explicitly define what it
means to be a great teacher. They didn’t conduct much rese-
arch in the field of education or development of knowledge,
because the already given computable data of the underlying
value-added model was serving as an easily exploitable data
point. Which ironically, was actually exploited by the people
affected by the model. Just like the creators exploited a simpli-
fication of our reality, this simplification was identified by the
outside and was used to trick the system. Not only are proxies
a great danger to the actors being simplified, they also serve
as an alarming attack surface to exploit the model. They are
shortcuts in both ways.
	 The same happened to the racist PredPol model. Looking
back at PredPol’s predictive policing model, the founder of the
company, Jeffrey Brantingham, told O’Neil that

[...] the model is blind to race and ethnicity. [...] PredPol

doesn’t focus on the individual. Instead, it targets geogra-

phy. (O’Neil, 2017, p. 86)

MISSING VARIABLES AKA. PROXIES

TRANSLATION OF COMPUTATION

6564

Which PredPol’s website also confirms. They state that they
only use three data points which are the type of crime, crime
location, and the crime’s date and time (PredPol, 2019). But
how comes that the inspected dataset from NYPD’s stop-and-
frisk policy, which is highly correlated to PredPol’s model, still
shows a bias in favor of white people? This happens because
the location data point is working as a perfectly fine proxy for
race. In our segregated cities, your location is saying much
about your ethnicity and social background.

To give another example of how proxies are used in a produc-
tion environment, I want to introduce another example from
Cathy O’Neil’s research. In 1983 the news magazine “U.S.
News & World Report” started to rank several major colleges
and universities from the U.S and would publish its findings as
“U.S. News Best Colleges Rankings”. In the beginning the list
was solely based on an internal survey send out to university
presidents. But as the complaints entered, the magazine nee-
ded to come up with a more sophisticated model. But again
confronted with the fundamental question, on which data will
the model be based on? They decided to stay with the survey
and give it a 25 percent cut of the whole evaluation. The remai-
ning 75 percent would be the model trained on “educational
excellence”. Of course “educational excellence” represented as
a vast collection of proxies, which were debatable to represent
the desired goal. Again the fundamental embodiment of the

rationalistic tradition did its duty and U.S. News later defined
“educational excellence” with SAT scores, student-teacher ra-
tios, acceptance rates, drop-out rates, and number of alumni
who would actively contribute money. The complex reality was
once again simplified to a bunch of computable data points
(O’Neil, 2017).
	 Referring back to the importance of the missing variable,
this particular model has a great confession to make: tuition
fees were not included in the prediction of the model. Ever
since the ranking went public tuition fees skyrocketed. Lea-
ving many students and families with depts in unimaginable
amounts.
	 Nevertheless the ranking became a national standard and
with that a much bigger problem arose. Just like it is often the
case, the model reinforced itself. Because of the wide accep-
tance, the ranking became the new objective for all colleges
and universities. Everyone wanted to be at the top of the list,
because that‘s where everybody was looking at. And as we
know from the nature of proxies, once they are implemented
and out in the open, they will be exploited to practice deceit.
And this is exactly what happened. The ranking turned into a
race of who can trick the algorithm the best, where the value
of education just didn‘t matter anymore.

But there is no need for us humans to put these shortcuts into
our systems, with machine learning in the tool belt we are set

MISSING VARIABLES AKA. PROXIES

TRANSLATION OF COMPUTATION

6766

and ready to interpolate. Essentially machine learning is a pro-
xy producing gambling machine. With pattern recognition, we
never know what we are going to get and how the importance
weights of the various features will look like.
	 Looking back at our cat and dog classification project, I
want to add another important step in the creation of the da-
taset. While preparing the dataset we would have to pay at-
tention to not create wrong correlations in the dataset. Let me
explain what I mean by that: when taking the pictures of the
cats and dogs, we would have to normalize them in a way, that
the model would actually pick upon the features we want it to
pick upon, meaning the visual difference between a cat and a
dog; and nothing more. If we would decide to place all cats in
front of an orange background and all dogs in front of a purple
background, the model would essentially also assign the fea-
ture of a lot of orange pixels to cats and the feature of a lot of
purple ones to dogs. So when we would place a dog in front of
an orange background, the model would most probably, pre-
dict it to be a cat. While training the model, the classification
can pick up very fine features, and there is no guarantee that it
would be a feature which is in correlation with our initial goal,
meaning there is no guarantee if the recognized pattern is a
proxy or not; making pattern recognition a proxy producing
gambling machine.

Machine learning does not distinguish between correla-

tions that are causally meaningful and ones that are inci-

dental. (Agüera y Arcas, Mitchell and Todorov, 2017)

The same is what probably happened to the model of the paper
“Automated Inference on Criminality Using Face Images” of
Xiaolin Wu and Xi Zhang, which was extensively analysed in
the great article “Physiognomy’s New Clothes” by Blaise Agüe-
ra y Arcas, Margaret Mitchell and Alexander Todorov. Wu and
Zhang’s paper states that they can predict

the likelihood that a person is a convicted criminal with ne-

arly 90% accuracy using nothing but a driver’s license-style

face photo. (Agüera y Arcas, Mitchell and Todorov, 2017)

When having a closer look at the sample of the dataset provi-
ded in the paper, it doesn‘t need much to spot a clear classifi-
cation feature, which is not part of the face. All three people
labeled as “non-criminal ID” are wearing a white collar shirt,
being a way too easy catch for our proxy gambling machine.

MISSING VARIABLES AKA. PROXIES

Hard-coded is an often referred to term in software develop-
ment. It describes a variable, expression or statement that is
absolute. Absolute meaning, absolute to the context the pro-
gram is written in, and with that not relational or flexible to
the environment. A hard-coded variable is set in the initial
programming environment, and would break it, if the environ-
ment would be changed. It cannot adapt to a new implementa-
tion environment.
	 With the constant representation of the external world in
writing software, human bias was so to say hard-coded into
the program. The programmer’s prejudice and view of the
world was directly hard-coded in it; it would be very explicit
and concrete, and wouldn’t adapt to any new situations. If a
programmer wanted to include a specific property of an object
but not another one, it would be absolute, no matter the en-
vironment the software is going to execute in.
	 One could argue now that through the implementation of
machine learning, the before defined absolute biases are not
hard-coded anymore. The argument would be that they emer-
ge from the dataset, which was used to train the model, and
with that they would emerge as generalized patterns of biased
data. While this argument holds true within the supervised
training process of a model, looking at the implemented and
fitted model, the absolute nature of the dataset uncovers. The
generalized patterns of the neural network camouflage the ab-
solute data points of the dataset as being relational variables.

69

HARD-CODED

HARD-
CODED

ARTICLE 10

TRANSLATION OF COMPUTATION

7170

After the training process is completed, the predictions of the
model are absolute: a given x will always result in the same y,
hence a given input will always result in the same output.
With that in mind, machine learning models are also hard-
coded, being inflexible and absolute. Just like the traditional
software program, the model is curated by absolute statem-
ents of the programmer, being hard-coded into the context it
was created in. Bias is and will always be hard-coded; hard-
coded by the human creating the piece of software.

Having looked at the emergence of algorithmic bias and how it
manifests itself in software development, one coherent theme
becomes apparent: there is no such thing as algorithmic bias
per se; the occurrences of bias are diverse and vary in form
and implementation. While the bias always finds its origin in
the human, through computational systems it abstracted itself
away from it and continues to live in different layers of our
complex systems.

The term “algorithmic bias” or “biased algorithm” is mislea-
ding to the public. It reinforces the thought that the algorithm
is biased itself. Just like in the whole process of its creation,
it once again shifts the responsibility away from the human
being. While the bias inherently becomes a property of the al-
gorithm itself, the term implies that it originated within the
algorithm and deflects from the human creators building the

systems.

Bias is inevitable and the hard part is not getting rid of it, but
spotting where it enters our complex computational systems
and to decipher the parts of the bias which are discriminating
and are actively harming people.
	 To better define and locate the bias, I would propose clas-
sifying the term “algorithmic bias” into three main problems,
which resemble the underlying domains where bias enforces
in software. I see the bias in software development as an on-
tological problem, a technical problem and a reinforced prob-
lem. However, the separation doesn‘t imply that the domains
work apart from each other. They are interdependent. In its
manifestation, bias always exists as a hybrid out of these three
problems/domains:

The ontological domain sits at the core of writing software. It
juxtaposes computation with the limitations and preconcep-
tions of human perception. With the work of Gadamer, Ma-
turana and Heidegger it describes the fallacies of interpreta-
tion and representation. Their concepts of the hermeneutic
circle, the fallacy of instructive interaction and thrownness
play a vital role within the context of the inevitable human
bias while observing and formulating the physical and relatio-
nal world around us.

HARD-CODED

TRANSLATION OF COMPUTATION

7372

The technical domain defines computation’s origin within the
rationalistic tradition. It states the fundamental and binding
technical bias of computational systems. Code itself is not neu-
tral nor objective. It exists as a highly rational medium, which
creates and favors a specific way of thinking and way of being.
Within the advanced rationalistic tradition of today, rational
thinking is not only favored, but the only option specified by
the computational systems. The domain questions the deeply
implemented rational fundament software is compiling onto.

The reinforced domain is the layer which functions as a catalyst
to the underlying problems and limitations. It commonly con-
sists of abstracted computational concepts based on existing
computational systems, reinforcing the rationalistic tradition
and practising highly complex hermeneutic methods. Through
the reinforcement the previous domains gain a protecting lay-
er, making them more opaque, less accessible and less change-
able. The technologies used to reinforce the previous domains,
develop means on their own to further stimulate the needs of
the rationalistic tradition and its consequences. Because of the
cascading reinforcement the direct implications of computati-
on become increasingly incomprehensible.

Within these three domains bias doesn’t exists as a static de-
finition or limitation per se; it exists as a dynamic process,
which gradually emerged within the computational systems;

historically and practically speaking. With the ever cascading
and accumulating interpretations, formulations and represen-
tations in software development, bias is not only a single pro-
perty with destructive consequences, but it can also be seen as
a temporal course and thus be defined as a process. A process
which needs to be acknowledged to reflect onto our ontolo-
gy to increasingly understand who we are and how limiting
we perceive the world around us. A process which needs to be
constantly updated to synchronize the world with the created
rational abstractions. And a process which needs to be trans-
parent to disclaim the decision making of inclusion and exclu-
sion to the computational affected environment.

HARD-CODED

The accompanying practical work is the creation of a concep-
tual dataset. It finds its purpose in communicating and explo-
ring the concept of classifying a spectrum. It is juxtaposing
the unacknowledged and unrecognized spectrums occuring
within the interpretations and representations of software
development with the widely acknowledged visible electroma-
gnetic spectrum. Within the act of classifying a spectrum the
work reflects on the rationalistic practises and techniques it
takes to make our complex world quantifiable.

Sticking to the rather materialist view and how it is giving the
tool itself the property and power to shape human behaviour
and thinking, my work finds appeal in this approach, giving
the tool the possibility to change its way of being used. The
definition of a tool is pre-defining the way it is used and un-
derstood. The tool’s values are hard-coded into its creation.
With that in mind I redefine the technique of machine learning
to the pattern recognition of human bias. Changing the initial
perspective and incentive of machine learning takes the ma-
terialist approach and redefines machine learning’s function.

1.	 From hard-coded human bias to generalized patterns of
biased data

2.	 Normalized data with human bias into pattern recogni-
tion

75

CLASSIFYING A SPECTRUM AND
THE PATTERN RECOGNITION OF HUMAN BIAS

CLASSIFYING
A SPECTRUM

AND THE
PATTERN RE-
COGNITION
OF HUMAN

BIAS
TECHNICAL DOCUMENTATION

77

CLASSIFYING A SPECTRUM AND
THE PATTERN RECOGNITION OF HUMAN BIAS

3.	 Machine learning as pattern recognition of human bias

These two approaches use the technological practical juxtapo-
sition of machine learning to learn and reflect onto our limit-
ations and reinforcements within the previously stated do-
mains. The transduction throughout the three domains give
us the opportunity to explore human bias within and through
machine learning.

Within this technical documentation I give insight in my
constant subjective decisions that occurred while creating the
computational environment around the practical work.

The work is a new media installation which finds its origin wi-
thin web development. The starting point of the installation
is the interface which is used to define and gather the dataset.
The interface is a simple website which consist out of three
main parts: classification, dataset and writing.
	 The classification starts with the generation of a random
color. Within the function setColor(), three floored numbers
between 0 and 255 are generated. They resemble the three
channels of the RGB color model, being red, green and blue,
which is a widely used additive color model to generate colors
in electronic systems.

const r = Math.floor(Math.random() * 256)

76

const g = Math.floor(Math.random() * 256)

const b = Math.floor(Math.random() * 256)

From these three variables a new object color is being created
to define a string which is then used to display the color via the
Cascading Style Sheet property background. The raw string of
the red, green and blue values is also synced to an input field
below the generated color to work as the input for the predic-
tions of the trained model.

this.color = {

 r: r,

 g: g,

 b: b

}

this.ui.rgb = `${ this.color.r }, ${ this.color.g },

${ this.color.b }`

Below the generated color and the RGB string input field, is
the list of possible color labels to pick from. The user visiting
the website classifies the generated color, with assigning one
of the labels to it. When one of the color labels is clicked, the
generated color value with the according color label are gathe-
red and prepared to be stored in the dataset. After a simple
validation, which handles possible misuse of the input fields of

TRANSLATION OF COMPUTATION

79

CLASSIFYING A SPECTRUM AND
THE PATTERN RECOGNITION OF HUMAN BIAS

labels, the function sendColor() sends out the new data point
with instructions to the backend of the application.

const msg = {

 do: ‘insert-color‘,

 data: {

 label: label,

 color: this.color

 },

 client: this.client

}

Looking at the object from down to top, the client key is a
unique identifier which is automatically generated on visiting
the website. The data key holds another object with the gene-
rated data points including the label with the according values.
The color key resembles the x value, while the label key stand
for the y value, which are later being used for the supervised
training process. The do key of the object gives the receiving
server the instructions on how to handle the incoming data.
In this case the string insert-color tells the server that it is a
newly generated data point which should be inserted into the
dataset. A timestamp and a unique id are added to the entry in
the database.

78

{

 “data“: {

 “label“: “violet“,

 “color“: {

 “r“: 203,

 “g“: 85,

 “b“: 184

 }

 },

 “client“: “62e77608efb71“,

 “timestamp“: 1545934945977,

 “_id“: “b5GjklTlfQjtaQzt“

}

If a generated color cannot be described or classified within
the given labels, the user has the ability to add a new label via
a second input field, which is then available to further classifi-
cations. With that the dataset’s diversity of y values is flexible
and updateable.

The second area of the website gives the ability to interact with
the application programming interface of the curated dataset.
It gives insight in the gathered data points and visualizes them
accordingly. After selecting a color label from the dropdown,
the server selects all matching data points and sends them
back to the client. The website then renders the received data

TRANSLATION OF COMPUTATION

81

CLASSIFYING A SPECTRUM AND
THE PATTERN RECOGNITION OF HUMAN BIAS

points, with their corresponding color values, on the screen,
giving a visual representation of the classified data. Each data
point is clickable, revealing the underlying entry of the data-
set as a direct copy from the database. The end points of the
application programming interface are open and completely
accessible to the public.

The writing area shows paragraphs of text consisting out of
excerpts of this writing to give the project more context and
to explain the theoretical background. Before the paragraphs
are rendered onto the screen, the excerpts are manipulated by
a regular expression script to properly display literature refe-
rences and to enable basic syntax highlighting.

On the server-side the machine learning model is being trained
in variable intervals. The standard value to retrain the model
is every 100 new data points. Everyday at 3:00 AM the model
is saved in an archive directory to document the process of
the training process. The intervaled retraining guarantees the
frequent synchronization between the model and its environ-
ment. The model itself is build with Google’s open source ma-
chine learning library Tensorflow.js. It is a standard sequential
neural network with three layers. The network’s architecture
consisting out of the first layer having an input shape of three
to resemble the three values of a color data point, the output
layer adapting to the current amount of color labels in the da-

80

taset and the hidden layer varying its amount of units to give
the network enough space to pick upon the features.

const model = tf.sequential()

const hidden = tf.layers.dense({

 units: 16,

 activation: ‘sigmoid‘,

 inputShape: [3]

})

const output = tf.layers.dense({

 units: 6,

 activation: ‘softmax‘

})

Within the website and on the initial page load the latest mo-
del is downloaded. The red, green, blue value input field is edi-
table and serves as the input value of the model. When the
input field is focused the model extracts the three values and
displays the predicted label based on them.

The installation setting consist out of an input device and
several output devices. The input device is an Apple iMac G3
displaying the described interface to gather new data points
during the exhibition. The almost 20 year old computer should

TRANSLATION OF COMPUTATION

83

CLASSIFYING A SPECTRUM AND
THE PATTERN RECOGNITION OF HUMAN BIAS

resemble the manifestation of the technical domain, which
also includes limiting interfaces and input methods. The
output devices are recycled computer monitors powered by
Raspberry Pis. They show a comparison of datasets and give
contextual insights in technical process and the underlying
theoretical work. The installation function as a live classifica-
tion of human bias.

The full source code can be found on https://github.com/
cccccccccccccccccnrd/translation-of-computation

82

TRANSLATION OF COMPUTATION

TRANSLATION OF COMPUTATION

84

@jackyalcine. (2015). Google Photos, Y‘all fucked up. My fri-
end‘s not a gorilla. Twitter. Retrieved from https://twitter.com/
jackyalcine/status/615329515909156865 on March 25, 2019.

Agüera y Arcas, B., Mitchell, M. and Todorov A. Physiognomy’s
New Clothes. Medium. Retrieved from https://medium.com/@
blaisea/physiognomys-new-clothes-f2d4b59fdd6a on March
25, 2019.

Bridle, J. (2018). New Dark Age: Technology and the End of the
Future. London: Verso.

Cramer, F. (2019). Pattern Discrimination: Craptularity Her-
meneutics. Lüneburg: meson press.

Critchley, S. (2009). Being and Time, part 4: Thrown into this
world. The Guardian Religion. Retrieved from https://www.
theguardian.com/commentisfree/belief/2009/jun/29/religi-
on-philosophy on March 25, 2019.

Friend, Z. (2013). Predictive Policing: Using Technology to Re-
duce Crime. FBI Law Enforcement Bulletin. Retrieved from
https://leb.fbi.gov/articles/featured-articles/predictive-poli-
cing-using-technology-to-reduce-crime on March 25, 2019.

ImageNet. (2019). ImageNet Explore. ImageNet Project. Re-

85

trieved from http://image-net.org/explore on March 25, 2019.

Lipton, Z. (2016). The Foundations of Algorithmic Bias. Appro-
ximately Correct. Retrieved from http://approximatelycor-
rect.com/2016/11/07/the-foundations-of-algorithmic-bias/ on
March 25, 2019.

Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., and Pitts,
W. H. (1960). Anatomy and Physiology of Vision in the Frog.
Cambridge: The MIT Press.

Metz, C. (2012). Facebook Tackles (Really) Big Data With
“Project Prism”. Wired Business. Retrieved from https://www.
wired.com/2012/08/facebook-prism/ on March 25, 2019.

New York City Police Department. (2019). Stop, Question and
Frisk Data. NYPD Stats. Retrieved from https://www1.nyc.
gov/site/nypd/stats/reports-analysis/stopfrisk.page on March
25, 2019.

O‘Neil, C. (2017). Weapons of Math Destruction: How Big Data
Increases Inequality and Threatens Democracy. London: Pen-
guin.

Pater, R. (2016). The Politics of Design: A (Not So) Global Ma-
nual for Visual Communication. Amsterdam: BIS Publishers.

REFERENCES

TRANSLATION OF COMPUTATION

86

PredPol. (2019). Predictive Policing: Guidance on Where and
When to Patrol. PredPol. Retrieved from https://www.predpol.
com/law-enforcement/ on March 25, 2019.

Richardson, L. F. (2010). Weather Prediction by Numerical
Process. London: Forgotten Books

Royle, A. (2018). Heidegger’s Ways of Being. Philosophy Now.
Retrieved from https://philosophynow.org/issues/125/Heideg-
gers_Ways_of_Being on March 25, 2019.

Sangosanya, W., Belton, D. and Bigwood, R. (2005). Basic
Gates and Functions. Digital Logic. Retrieved from http://
www.ee.surrey.ac.uk/Projects/CAL/digital-logic/gatesfunc/ on
March 25, 2019.

Simonite, T. (2018). When It Comes to Gorillas, Google Photos
Remains Blind. Wired Business. Retrieved from https://www.
wired.com/story/when-it-comes-to-gorillas-google-photos-re-
mains-blind/ on March 25, 2019.

Winograd, T. and Flores F. (1987). Understanding Computers
and Cognition: A New Foundation for Design. Norwood: Ablex
Corporation.

87

REFERENCES

Hiermit versichere ich, dass ich die Arbeit selbstständig ange-
fertigt habe und keine anderen als die angegebenen Quellen
und Hilfsmittel genutzt habe. Zitate habe ich als solche kennt-
lich gemacht.

Köln, 26. März 2019

VERSICHERUNG

