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Computation is all around us. Since the breakthrough of mo-
dern integrated circuit technology, computation expanded 
into every aspect of everyday life. Transistor sizes down to 7 
nanometer enable computation to hide behind user interfaces 
of all kinds, the internet creates a vast mesh of computatio-
nal networks that connect and govern over half of the world‘s 
population, and companies chosen to bet on computation are 
now the leading top of economical power (Bridle, 2018).
	 Computation is serving this platform of utter most power 
to its instructionist, the software. Software is the determining 
part of the computational equation. Its abstract symbol struc-
tures will guide the physical logic gates, which will inevitab-
ly result into a ripple of multiple electrical signals, deciding 
about the final output of the computational equation. Whether 
the final output is about displaying some trending tweets or 
whether it is consulting a judge deciding about someone‘s pri-
son sentence; software is part of the equation and it is not only 
part of it, but it constitutes most of it. Through the computa-
tional platform software has the essential scale and the neces-
sary flexible physical structure to be embedded into everyday 
life. Instead of just being part of it, being the layer on top or 
down under of the physical world, it has proven itself to be the 
interwoven medium used to build the systems of the informa-
tion age of today. Its existence became essential to the western 
modern life.
	 While computation (from now on as software and physical 
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computation intertwined) decided more and more about hu-
man life, showing its increasing imprint in socio-political im-
plications and with progress in the area of Artificial Intelligen-
ce, it gained increasing attention from sociologists and media 
theorists reflecting on the state of software in our societies. 
With the breakthrough of machine learning and deep neural 
networks and their immediate wide usage one particular phe-
nomenon was recently acknowledged more frequently:
	 Biased algorithms describe the appearance of discrimina-
tion and the reinforcement of prejudice connected to identity 
constructs like race, ethnicity, sexuality, gender or culture in 
computational systems. The concept of algorithmic bias rose 
in popularity because of recent incidents of heavily biased ma-
chine learning algorithms (Lipton, 2016).
	 As we will see throughout the following articles, the idea 
is that the problem of algorithmic bias is a more complex one 
that shouldn‘t be simplified and limited to the discourse of 
machine learning. Although machine learning brings its new 
technical concepts with it, which shouldn’t be disregarded in 
the analysis of bias, it is important to note that algorithmic 
bias is rooted in software per se, not machine learning. Algo-
rithmic bias is a fundamental software problem. In recent con-
versations machine learning served as a catalyst and opaque 
layer which enforced the bias and distracted most research 
away from the actual underlying flaws of software develop-
ment.

To understand the implications of bias in machine learning it 
is important to first look at the foundation of bias in traditio-
nal software.



The previously mentioned underlying computational platform, 
on which software is building upon, can be reduced to elemen-
tary mathematics. The base component of modern computer 
systems is the integrated circuit. It consists of numerous tran-
sistors, which form logic gates, being the main logic operator 
serving the defined algorithms of the software. The transis-
tors in a logic gate essentially function as a switch, making 
it possible to execute the most basic logical operations, like 
NOT, AND, OR but also NAND, NOR, XOR, XNOR. Within the 
computational platform, they serve as the fundamental imple-
mentation of software. From there on the complexity of logic 
is as good as infinite. All complexity in modern computer sys-
tems is based upon and broken down in these basic operations 
to be able to execute and understandable to the computational 
platform (Sangosanya, Belton and Bigwood, 2005). 
	 An algorithm defined in software is hard to generalize and 
define, because of the concept’s wide diversity of usage. Ne-
vertheless an algorithm always defines given input data, de-
fines instructions on how to process that data, and produces 
an output based on the given instructions. While algorithms 
can easily exceed human comprehension in complexity, its ba-
sic structures are always the same and based upon the logical 
operations of the underlying logic gates. In a simplified way, 
looking at decision tree diagrams and the control flow of an 
algorithm, every new stage of the algorithm results in a yes 
or no answer based on specific statement, like IF and ELSE, 
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which are again represented in objective logical operations.
	 The nature of algorithms is objective math; and with that 
goes the general assumption that computation has some kind 
of privileged status of objectivity. That computer systems are 
based on mathematical hard facts and therefore are free of 
human prejudice or interpretation of any kind, blinded by the 
mere assumption of the algorithm’s neutrality.
	 While a single logic operator is funded in objective math, 
it is the constellation of them, which are inherently subjective. 
The constellation of them is neatly curated by the human cre-
ator and with that every statement of the algorithm constitu-
tes a formalized representation of the creator’s environment, 
views and prejudice. 

Computers neither consider nor generate facts. They ma-

nipulate symbolic representations that some person gene-

rated on the belief that they corresponded to facts. (Wino-

grad and Flores, 1987, p. 136)

The following articles will serve as the foundation of the ana-
lysis and exploration on how these representations are being 
implemented and where the human bias manifests itself in 
computation.



For this and the following chapters I would like to introduce 
the work of Terry Winograd and Fernando Flores Understan-
ding Computers and Cognition: A New Foundation for Design 
from 1986. The book was published in a time when compu-
ters started to receive increasing attention from any kind of 
business, institution or even individual consumers. Computer 
systems were the new technology, which was promising to dri-
ve efficiency and profit forward. In the vast progress of these 
new developments, Winograd and Flores proposed a new de-
sign approach, looking at the fundamentals of what it means to 
create computational systems and how they and their implica-
tions fit into modern society. Actively criticizing the occurring 
software development processes at the time. Their approach 
was highly influenced by philosophical and phenomenological 
discourses, which led them to an analysis of the core of how 
human cognition and computation join forces in computer 
systems.
	 While current development environments are layered 
and layered by different code structures and codebases, and 
with non-transparent machine learning techniques in mind, 
Winograd and Flores ontological conceptual tools become an 
essential part of the examination of algorithmic bias; a glan-
ce at how software’s concepts are actively shaping the way we 
think.

Winograd and Flores open up their work by introducing the 
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term rationalistic tradition. They use the word tradition in a 
different context than usual. Winograd and Flores use it to 
pinpoint that no question can be raised from a neutral or ob-
jective standpoint. They redefine the use of the word tradition 
to a broader sense, more like a pre-understanding or a way of 
being; more of a cultural background or way of thinking.
	 Their first important insight about the rationalistic tradi-
tion is that it has been the mainspring of western science and 
technology. Especially the ones where principles can be captu-
red in formal systems. They state that it has greatly influenced 
the development of linguistics and cognitive psychology and 
define it further with listing a series of steps, which resemb-
le the rationalistic orientation. To the question “What do you 
do when faced with some problem whose situation you care 
about?” the solution process would be the following:

1.	 Characterize the situation in terms of identifiable ob-

jects with well-defined properties.

2.	 Find general rules that apply to situations in terms of 

those objects and properties.

3.	 Apply the rules logically to the situation of concern, 

drawing conclusions about what should be done. 

(Winograd and Flores, 1987, p. 15)

Looking at this list it becomes apparent that problem-solving 
procedures like the ones  shown here are of fundamental na-
ture of business operations, scientific methods, and also soft-
ware development. Just like computation entered our daily 
lives, the rationalistic formalization process was directly em-
bedded into it. Computation reinforced the rationalistic tradi-
tion into every aspect of modern life.
	 As we will see in the following articles, this list is a dan-
gerously simplified description of the world around us. Sepa-
rating the world into objects and non-objects and assigning 
them properties or deciding to leave out specific properties 
and then generalizing rules on top of them raises numerous 
difficulties.
	 While Winograd and Flores showed high concern with the 
wide implementations of the rationalistic tradition, looking at 
contemporary literature, it seems that the rationalistic traditi-
on was just the beginning of a new way of thinking:
	 James Bridle, an artist and writer, published New Dark 
Age: Technology and the End of the Future in 2018, where he 
is describing his interpretation of computational thinking. Al-
though the term is used frequently in and originated in the 
computer science industry, Bridle uses the term differently 
and puts it into another context. Rather than seeing computa-
tional thinking as the concept of being able to abstract a pro-
blem and automate and analyse the solution, Bridle connotes 
the term fairly negative and sceptic. He sees
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computational thinking [as] an extension [...to] solutio-

nism: the belief that any given problem can be solved by the 

application of computation. (Bridle, 2018, p. 4)

and argues that

computational thinking is predominant in the world today, 

driving the worst trends in our societies and interactions 

[...]. (Bridle, 2018, p. 4)

Bridle goes as far as Winograd and Flores and describes it as a 
way of thinking: 

Computation replaces conscious thought. We think more 

and more like the machine, or we do not think at all. (Brid-

le, 2018, p. 43)

Bridle’s computational thinking could be described as a highly 
perverted version of the rationalistic tradition. Not only do we 
see the world as a computational system, we actively constitu-
te it as one. Through computation, the rationalistic tradition 
not only drives most of problem-solving disciplines from to-
day, but it became the only option we have.



To further expose the core of why the rationalistic tradition 
aka. computational thinking poses as the killer of a fair and di-
verse world, this article will briefly introduce two conceptual 
tools to explore the difficulties and fallacies of interpretation 
in language and cognitive representation.
	 Hermeneutics was first and foremost the tool of under-
standing the meaning of mythical and religious text. It emer-
ged as a theory and later became applied science, nowadays 
mostly camouflaged as analytics, because specific text pieces 
would be understood differently each time they would be 
re-read, realizing that the meaning of text is not absolute. 
Although hermeneutics was also used to completely decont-
extualize text in the most objectivist sense, we will use herme-
neutics to take a closer look at how interpretation plays a vital 
role in understanding.
	 In the discourse of how bias is defined in software, we find 
appeal in the work of philosopher Hans-Georg Gadamer. In 
his understanding of hermeneutics, interpretation plays a vital 
role. It is the primary action taking place within the backg-
round provided by the reader and the background provided by 
the writer. The writer and reader essentially join in an interac-
tion of understanding based on their pre-understanding of the 
world. For him, in contrast to the objectivists, a text cannot 
exist without a context and cannot be understood without re-
garding the context of reader and writer. For Gadamer
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any individual, in understanding his or her world, is cont-

inually involved in activities of interpretation. (Winograd 

and Flores, 1987, p. 28)

And just like in reading a text, these interpretations are ba-
sed on the pre-understanding of the individual, fundamentally 
grounded in prejudice and bias. He argues that our pre-under-
standing and the connected prejudices and biases are inevita-
ble. It would be naive to think, that we can perceive a situation 
with being fully aware of our pre-understanding. It is a funda-
mental part of being human to be blinded by our own backg-
round (Winograd and Flores, 1987).
	 The important insight I want to introduce, is the concept 
of Gadamer‘s hermeneutic circle. With that he closes the loop 
encapsulating the feedback loop of pre-understandings. Whi-
le I read a text, I can only understand it with my particular 
background in time. However this background is just another 
product of other interpretations I made before based on the 
pre-understanding I possessed at that time.

What we understand is based on what we already know, 

and what we already know comes from being able to under-

stand. (Winograd and Flores, 1987, p. 30)

To further look into the understanding of human perception, 
the biologist Humberto Maturana presents very interesting 

findings questioning the validity of common sense understan-
ding of biological cognition.
	 In the work “Anatomy and Physiology of Vision in the 
Frog” (Maturana, Lettvin, McCulloch and Pitts, 1960) Ma-
turana, with three other biologist, first discovered and shed 
light on the misconception of direct cognitive representations. 
In this work they stated that the activity in the optic nerve of 
a frog was not a direct representation of the light pattern on 
the retina. As it turned out specific fibers, connected to the re-
tina, already took over specific cognitive processes. One type 
of fiber, for example, responded best to flies, being triggered 
by a small dark spot surrounded by light (Maturana, Lettvin, 
McCulloch and Pitts, 1960).
	 With more research and revelations of that kind, Matura-
na went as far as calling it the fallacy of instructive interaction, 
meaning that direct cognitive representation of our environ-
ments are a big misconception. Supporting the statement with 
his concept of autopoiesis and structural coupling, describing 
that human interaction with the environment is always hap-
pening through the entire nervous system. Changes that are 
happening in the perceived environment are not represented 
one by one in the nervous system. The interconnection bet-
ween perceiving and the saved state in the nervous system are 
not representational.
	 With that in mind Winograd and Flores go on to counter 
Maturana’s findings to the behaviorist approach to cognition, 
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stating that an organism behaves on the ground on external 
stimuli. They decipher his argumentation as following:

Maturana [...] argues that we cannot deal with organism 

and environment as two interacting independent things. 

We cannot identify stimuli that exist independently of 

the unity and talk about its history of responses to them. 

The unity itself specifies the space in which it exists, and 

in observing it we must use distinctions within that space. 

(Winograd and Flores, 1987, p. 48)

While the digression into the topic of hermeneutics and co-
gnitive science doesn’t seem relatable to algorithmic bias, as 
we will see in the following article, the described fallacies of 
interpretation and cognitive representation are the foundation 
within software development.

HERMENEUTIC CIRCLE AND
THE FALLACY OF INSTRUCTIVE INTERACTION



While programming languages started out to be very close to 
actual machine code, being 1s and 0s, which the boolean logic 
gates could directly interpret, programming languages no-
wadays oriented themselves through concepts like object ori-
ented- and functional programming towards written langua-
ge. So called high-level languages are closer to English than to 
machine code. Although it seems like the implementation of 
high-level programming languages orients itself away from its 
computational origin, it is important to note that it is just ano-
ther abstraction sitting on top of the highly rational structure 
of computation. 
	 Nevertheless, software can and should be treated as lan-
guage to fully understand its affiliation with hermeneutics. 
Not to forget, that in practice, writing software is an inhe-
rently social activity. Humans write code for humans. Within 
contemporary software development, codebases are managed 
by numerous programmers at the same time. They engage 
in a conversation of formalized views of the world, being in 
constant flux of their interpretations and cognitive represen-
tations. Reading code becomes an essential part of software 
development and with that also the interpretation and under-
standing of it. But not only are the hermeneutic problems limi-
ted to the literal reading process of code.
	 A general procedure of the construction process of a com-
puter program needs to be detailed: 
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1.	 Interpretation and observation of the situation

2.	 Formalization and definition of its objects, properties and 
operations

3.	 Representation and implementation into computable code

First, the programmer needs to observe the given situation 
and deduce what is relevant for the problem at hand. These 
observations lead to the interpretation of the programmer 
which propagates through all other steps of the process. Se-
condly, the programmer goes on to formalize the relevant fin-
dings based on the previous observation and interpretation. 
Because of the rational symbolic nature of computation they 
must be defined as very specific rules. This definition consists 
of objects and the corresponding properties of the environ-
ment. Interconnecting them with operations which act upon 
the specified objects. Lastly, the programmer implements this 
formalization as a representation into code. This representa-
tion can look quite differently on the surface, depending on 
computer architecture and choice of programming language, 
but will always represent the underlying formalization as ela-
borated in the second stage.

Writing software is the act of formalizing the external world 
around us into abstract symbolic structures. It is the interpre-

tation of the world into code, while cognitive representations 
are happening at every stage of it. The programmer enacts a 
very political action with writing software and is doing so with 
the limitations of the given background, being the pre-under-
standing and cognitive representations of the world. Winograd 
and Flores call this the “phenomenon of blindness”, building 
upon the terminology of the philosopher Martin Heidegger.
	 Heidegger combines Gadamer’s and Maturana’s thinking 
into his analysis of the world, profoundly questioning the rati-
onalistic tradition and its core ontology. Just like Gadamer and 
Maturana, Heidegger rejected the separation of an objective 
physical reality and a subjective mental world or the possibi-
lity to describe an external “real world”. Important for us to 
understand are parts of Heidegger‘s thrownness (Dasein) and 
readiness-to-hand (Zuhandenheit).
	 Thrownness argues that we are, independent of our will, 
thrown into situations. Even if we decide to leave the situati-
on or to not take part in it, they are inherently decisions and 
determined actions. Just like we cannot, not communicate; we 
cannot, not act. Plus, these inevitable actions are not directly 
perceivable to us. If we try to take a step back to reflect on the 
situation, we are blind to specific parts of it, which are there-
fore not perceivable and with that not part of the observation 
(Critchley, 2009). It is closely related to Maturana’s findings of 
direct representations. The same way the nervous system does 
not represent a direct representational state of a perceived si-
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tuation, we can only reflect with our thrownness on it as such. 
There is no stable representation of a given situation. Looking 
at hermeneutics and its background of pre-understanding, we 
can move from the understanding of text, to the understan-
ding of a situation and argue that a given situation cannot be 
perceived at without the context of interpretation and pre-un-
derstanding. Every representation which occurs in a situation, 
will have fundamentally different interpretations.
	 Closely related to the concept of thrownness Heidegger 
introduces another term called readiness-to-hand, with his in/
famous example of hammering. He states that a person who is 
using a hammer, and is in the act of hammering, is actually not 
perceiving the hammer. For the person using it, the hammer is 
not identified as an object; the hammer doesn’t exist as such. 
Rather it exists in the unconscious readiness-to-hand back-
ground. According to Heidegger the hammer itself becomes 
only perceivable as an actual object, when there is some kind 
of breaking down or unreadiness-to-hand occurring (Royle, 
2018). Just like the hammer having a loose head, and with that 
becoming present-at-hand, is only perceivable as such in that 
situation, the inevitable thrownness of a situation puts us into 
a state of blindness. As a supposedly observer, we can see a gi-
ven situation as an object and maybe reflect on its properties, 
but for the person being in the thrownness of the situation 
it is concealed and not identifiable as such. Thrownness and 
breaking down exists and shapes differently for every person 

being part of a situation, being closely related to their pre-un-
derstanding and the hermeneutic circle.
	 With the concept of thrownness and readiness-to-hand, 
Heidegger inevitably describes the cognitive representation 
and hermeneutic fallacies and transfers them into everyday 
life.

Winograd and Flores concept of the “phenomenon of blind-
ness”, describes the previous ontological approaches and maps 
them into the environment of software development. Let us 
look at the translation of computation again to see, where this 
particular blindness takes places.

Interpretation and observation of the situation is the most cri-
tical and controversial stage from an ontological point of view. 
The observations and interpretations made in this step are 
very subjective to the programmer. They are based on the her-
meneutic pre-understanding and are inherently not free from 
any prejudice. The programmer is inevitably engaged into Hei-
degger’s thrownness, while trying to define a situation from an 
observer‘s standpoint, making it impossible to reflect fully on 
it. This stage serves as the utter most restricting as it decides 
about inclusion and exclusion of the consecutive computati-
onal equation. It determines who or what will be computed.

To acquire an awareness of a situation is, however, always a 
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task of particular difficulty. The very idea of a situation me-

ans that we are not standing outside it and hence are unable 

to have any objective knowledge of it. We are always within 

the situation, and to throw light on it is a task that is never 

entirely completed. This is true also of the hermeneutic si-

tuation, i.e., the situation in which we find ourselves with 

regard to the tradition that we are trying to understand. 

The illumination of this situation—effective-historical re-

flection—can never be completely achieved, but this is not 

due to a lack of reflection, but lies in the essence of the his-

torical being which is ours. To exist historically means that 

knowledge of oneself can never be complete. (Gadamer, 

1975, p. 268)

Formalization and definition of its objects, properties and 
operations is the embodiment of the rationalistic tradition 
and computational thinking. While having a set interpretati-
on present at hand (and present-at-hand), it needs to be even 
more simplified to be computable. At this stage further ma-
nipulations can happen, because of their rational nature they 
have to be formalized into. Not only the definition of an object 
with its properties serves as a highly complex task, the forma-
lization limits the available possibilities by a great extend. 

In this way, computation does not merely govern our ac-

tions in the present, but constructs a future that best fits its 

parameters. That which is possible becomes that which is 

computable. That which is hard to quantify and difficult to 

model, that which has not been seen before or which is un-

certain or ambiguous, is excluded from the field of possible 

futures. (Bridle, 2018, p. 44)

Representation and implementation into computable code is 
the stage that concludes the perpetual state of the interpre-
tation. At this stage the formalized interpretations are being 
implemented as direct representations. While direct represen-
tations are a fallacy of our understanding of human cogniti-
on, they are very real in the space of software development.  
With them every software program serves a very concrete re-
presentation of the interpretations and formalizations of the 
programmer’s view on the given situation. It encapsulates the 
representations no matter what the implementation environ-
ment might be. During the implementation of the computable 
code the representation will happen, regardless of having any 
concrete concept of its executing environment. Code will exe-
cute. It only cares about its given representational state.

In writing a computer program, the programmer is respon-

sible for characterizing the task domain as a collection of 

objects, properties, and operations, and for formulating the 

task as a structure of goals in therms of these. Obviously, 

this is not a matter of free choice. The programmer acts 
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within a context of language, culture, and previous under-

standing, both shared and personal. The program is forever 

limited to working within the world determined by the pro-

grammer’s explicit articulation of possible objects, proper-

ties, and relations among them. It therefore embodies the 

blindness that goes with this articulation. (Winograd and 

Flores, 1987, p. 97)

With these concepts in mind, the programmer enacts a very 
disturbingly political action in writing software. It became 
apparent that the algorithmic bias is a very complex pheno-
menon and that it is a fundamental inevitable part of writing 
software, directly connected to the human writing it. It is cru-
cial to move away from talking about objective or neutral al-
gorithms and instead start expecting bias; instead of talking 
about facts, we have to start talking about interpretations.

REPRESENTATION



Having looked at how bias lives in software per se, it is time 
to go back and join the discourse of algorithmic bias in ma-
chine learning. Exploring how to locate our previous findings 
in the field of machine learning. Machine learning is based on 
the concept of models, and with that it is closely related to the 
concept of cognitive representations. Fetching the english spe-
aking wikipedia.com page with the search parameter “Model”, 
a quick search for the term “representation” shows an alleged-
ly consensus on the definition of a model. Representations are 
the essence of modelling. It doesn’t matter in what discourse, 
field of study or industry it is defined; ultimately, a model is no-
thing more than an abstract representation of a given process. 
Whether it be about Amazon’s fulfillment center supply chain, 
the bug fixes of REWE’s new cashierless systems or the mere 
idea of your next meal. Models are everywhere and they don’t 
always need to be in the form of computational code.
	 Being in the world of models and coming from cogniti-
ve representations, like we know them from Maturana and 
Heidegger, computer science started to treat the mind like a 
computational device. The field would talk about cognitive 
computation, different processors for vision and haptic, and 
different states of memory, declaring the early days of already 
successfully reinforced computational thinking. To figure out 
how humans understand and interact with computers, it see-
med the most plausible idea, to also be able to deal with the 
incoming feedback by the human operator of the information 
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system. While we know the difficulties of that idea, we are in 
the middle of the vice versa process, which of course has the 
same kind of problems. Nowadays we are trying to model the 
brain into the machine; generating computable models.
	 In the field of machine learning, the architecture of sta-
te-of-the-art models is based on the neural networks of our 
brains; at least on our current understanding of them. To fully 
understand how and where bias enters the process in machine 
learning, and to compare the differences to previously discus-
sed forms of bias, we have to understand its technicalities and 
alter the translation of computation accordingly.
	 Just like an ordinary software algorithm, computational 
models feed from a specific set of inputs to generate a specific 
set of outputs based on rules. The main difference between 
an algorithm and a model is that the model’s outputs are pre-
dictions. Predictions based on an internal generated algorithm 
based on the given input. To put it simply, a model is a repla-
cement of the formalization, hence the rules, of an algorithm. 
We do this because defining specific formulations is hard. The 
idea is that we want to give the model some inputs and the 
correlating outputs; whereupon the model starts and learns 
the rules, so that when it is given some new never before seen 
inputs, it can create reasonable outputs, based on the fed in 
data by itself. But what are these inputs and outputs that defi-
ne the model? In the field of so-called supervised learning, the 
programmer has to provide a dataset, resembling the inputs 

and outputs that want to be achieved. The dataset that is fed 
into the model is crucial. It serves as training and testing data 
to shape the internal formalizations of the model.
	 Imagine a situation where the task would be as banal to 
write an algorithm that could distinguish cats from dogs. At 
first sight the problem might seem simple, but having a clo-
ser look at the rational formalized nature of algorithms, how 
do you define how a cat or a dog looks like and how do you 
define that input data? The first step would be to choose a me-
dium, which would resemble cats and dogs, which the compu-
ter could interpret. Let’s go with simple RGB images for now. 
They are handy, because they are easy to handle and already 
exist as formalized lists of bits and bytes aka. pixels, ready for 
the computer to read. So to re-define our algorithm: It is a clas-
sification of cat and dog images. Maybe not exactly what we 
wanted, maybe the initial solution would have been better to 
distinguish them in smell or sounds and not visual appearan-
ce.
	 Having that set we would start writing an image proces-
sing algorithm, which would take the pixels of an image as in-
put and output a string of “cat” or “dog”, to tell us the class of 
the image. The internal formalization of the interpretation of 
cats and dogs, would maybe look as the following: If, in this 
grid of 9x9 pixels, the contrast between darker and lighter pi-
xels form a more triangular shape, it could possibly be a cat 
ear, but only if it is close to the other 9x9 grid, which resembles 
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a part of a more circular looking shape, possibly being the start 
of a cats head. For the dog we would possibly go and look for a 
more upright posture or a longer snout with a more roundish 
looking nose. But what about dogs with triangular ears or cats 
that happen to walk upright? These classifications within the 
algorithm, being “small snout”, “triangular ear”, “long leg”, all 
representing a different arrangement of pixels, are called fea-
tures; and it is almost impossible to get them right.
	 But this is exactly where supervised learning within ar-
tificial neural networks comes into place. We would not for-
malize these features ourselves, but let the model figure them 
out for us. We would train the model, based on the dataset 
we provide for it. So back to the images of cats and dogs. All 
we would have to do is to get a large amount of images and 
label them accordingly as “cat” or “dog”. The dataset would 
be a collection of data points consisting out of an image, also 
often referred to as the x value, and the corresponding label, 
being y. But where would we gather the images from? We could 
shoot some ourselves, to have full control over how the images 
would come out, but what exactly are we going for? Landscape 
or portrait, what kind of background, being still or being in 
action, inside our outside, more focused on the face or on the 
body statue? And most importantly, what kind of breeds would 
that include in our dataset? Making the pictures by ourselves 
gives us great control over the appearance of the picture, but 
we will probably only have a very limited amount of data to 

work with. The common solution is the internet, serving as a 
vast collection of free to access data.
	 But what images will Google Image Search or Facebook 
really serve us? Several algorithms are already behind what 
the platforms are showing us. Adding another layer of poten-
tial bias would limit our process of gathering representational 
training data. All these decisions would lead to a different ar-
rangement of pixels for the model to train upon, hence resul-
ting into different features the model will predict with. But 
let’s pretend we managed to gather a relatively representati-
onal dataset of cats and dogs. Maybe we did it all by oursel-
ves in the end, which by no means implies less bias, just more 
controllable bias. We would continue with the step of labeling 
our data, hence our pictures of cats and dogs. The potential 
problems with that are clear by now. Who or what is doing the 
labeling?
	 How specific do we want to be? Just two labels or maybe 
a label for different breeds? But what about cross-breeds then? 
Again pretending we made the right decisions for our specific 
use case, going for the sake of simplicity with just “cat” and 
“dog”, we are ready to so-called fit our model. Fitting the mo-
del is divided into a training and validation process. The mo-
del is training with a specific part of the dataset and after a 
given time it uses the other part of the dataset to validate its 
predictions. In the beginning the model will guess completely 
randomly if an incoming picture is a cat or a dog. At that point 
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the model can calculate an error, because of our given supervi-
sed dataset. After each guess the model knows whether it was 
right or wrong and some validation epochs in, the model will 
start to recognize patterns in the data, hence our features we 
tried to manually describe before. Each feature describing a 
part of what it means to look like a cat or a dog.
	 The model keeps track of how much percentage a speci-
fic feature makes up to be an image of a cat or dog and after 
enough training, the model has a formalization of the specific 
features and their corresponding importance, representing 
our dataset. The model can be shown a completely new pic-
ture, which was not in the dataset before, and can predict with 
what percentage it recognizes a cat or dog. It can predict with 
what percentage the formalized feature list matches the featu-
res it can extract out of the given image. At this moment it is 
not easily comprehensible anymore what kind of features the 
model actually picked upon to be important for a given classifi-
cation, but it is only working in the domain of our dataset that 
we gave it access to.
	 To compare it to the translation of computation, machine 
learning still embodies major parts of it. With the introducti-
on of machine learning, a major part of the formalization stage 
might be replaced, but the inherent bias of the interpretation 
and representation are still binding and certainly present. The 
selection of data still resembles a very specific interpretation 
of the creator and raises completely new questions to be ans-

wered.
	 After the training process the model and its predictions 
are still set in stone, affecting the environment of implementa-
tion in the same way; and with that bias now camouflages itself 
even more behind the rationalistic nature of computation.

Models are opinions embedded in mathematics. (O’Neil, 

2017, p. 21)

To give a concrete example of how these models are already 
implemented in our world and don’t just affect our little side 
project of the classification of cats and dogs, I want to intro-
duce the work of Cathy O’Neil. She worked as a math professor 
and left academia to work as a data scientist in finance and in 
e-commerce, actively being a part of the leading industries of 
computational models. Gaining increasingly insight into the 
nature of computational thinking and experiencing the 2008 
financial crisis first hand, she realized the flawed parts of the 
system she was working in. In 2011 she started her blog math-
babe.org and in 2017 published her book “Weapons of Math 
Destruction: How Big Data Increases Inequality and Threa-
tens Democracy” to spread the word about her research on the 
topic of algorithmic bias. Regarding this work, her book serves 
as an archive of flawed models, coming from first hand experi-
ences and thorough research.
	 Let me walk you through the story of a model, which 
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was designed to better Washington, D.C.’s underperforming 
schools to explain the direct impact on human life through 
modeled algorithms. Not to spoil: The model ended up a cata-
strophe, leading to undeserved job losses and excessive rise in 
fraud.
	 The process started with the false and overly rushed as-
sumption that when students of a school are not performing 
well enough, apparently the teachers were not doing their job 
right. The newly hired chancellor of Washington’s schools de-
fined the plan of the new solution. With the model’s objective 
set, being the evaluation of teachers, the teacher assessment 
software called IMPACT was developed. It would filter out the 
bottom two percent recieving the worst scores. Although the 
fifth-grade teacher Sarah Wysocki received overwhelmingly 
good feedback from the parents of the class, she was fired ba-
sed on the evaluation of the algorithm. The new value-added 
method of the model would judge her effectiveness in teaching 
math and languages and the scores would be combined with 
the ratings of the community. Despite the positive ratings 
of the community, the score was not high enough for her to 
withdraw from the high influence of the model. IMPACT had 
such a high influence on the overall score, because the creators 
wanted to eliminate human prejudice. They argued that the 
community could be biased in favor of Wysocki, because of 
social connections or friends in high positions, which had no-
thing to do with her teaching skills.

So Washington, like many other school systems, would 

minimize this human bias and pay more attention to sco-

res based on hard results: achievement scores in math and 

reading. The numbers would speak clearly, district officials 

promised. They would be more fair. (O’Neil, 2017, p. 5)

This is a very typical phenomenon happening in the defense of 
computational models. The arguments always go in the direc-
tion of wanting to eliminate human bias with turning to “hard 
results”. But the fallacy, as we know, is that the elimination 
of the human-in-the-loop just passes on the bias to the com-
putational formalization, serving camouflaged bias in mathe-
matics. Bias that is hidden inside the equations of the external 
model, only perceivable to the elite of the 21st century: mathe-
maticians, data scientists and software engineers.

With probably similar thoughts in her mind, Wysocki wanted 
to know how the scores would actually be evaluated and how 
the value-added method was defined. She figured out, like it is 
so often the case, that the district had hired an external data 
science consultancy; in this case Princeton based Mathemati-
ca Policy Research. The value-added model would compare 
current test results against the results of the previous year ta-
ken by the same student. Like this, only comparing scores of 
the same students, the scores should be freed from any social 
status privilege and not be based on some general, global score 
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average. While this approach definitely goes in the right direc-
tion of attempted fairness, the question of the teachers part in 
the computational equation still remains. How much of a po-
tential score decline can you actually associate to the teacher? 
Wysocki expressed herself stating that

There are so many factors that go into learning and tea-

ching that it would be very difficult to measure them all. 

(O’Neil, 2017, p. 6)

And of course Wysocki completely got it right here. Because 
of the model’s inherent nature of the computational platform 
and interpretations in the selection of the data, they are by 
definition generalizations and simplifications. If you are the 
exception of the dataset; the so-called noise that doesn’t fit 
into the non-linearly separable function, you will get sorted 
out. As these generalized models decide more and more about 
our direct lives, they serve as a big threat to minorities and 
marginalized groups not fitting into generalizations.

As we cannot be certain on how big and diverse the dataset 
was that Mathematica Policy Research used for their model, a 
major problem could have been the amount of available data. 
Big Data companies like Facebook, Google, Amazon and co. 
models are trained on datasets with data points reaching into 
the 100 millions (Metz, 2012). Which of course also doesn’t 

guarantee any correctness of a model, but the amount of data 
is definitely a big part of it. Formalization take time and fin-
ding features is hard. A certain size of the dataset is a must to 
provide the model with enough variety to recognize patterns.
In the environment of this specific model, we are dealing with 
classes of maximum thirty students, which results in thirty 
scores aka. thirty data points and this is just not enough to do 
serious analytics. Even if IMPACT was trained with data of 
several schools, the quality of the predictions are still highly 
questionable. In situations like this already existing models 
are often reused as so-called pre-trained models... 
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A pre-trained model is a model which was already trained and 
is ready to predict; a kind of plug-and-play situation. It is a 
common procedure when the internal classification is simil-
ar to the needed classification at hand. Especially when not 
much data is present this procedure is preferred. They serve 
as a counterfeit advance to have higher confidence values in 
the model’s predictions right from the beginning of usage. The 
problem with pre-trained models is that they were trained and 
defined in a completely different environment than they are 
implemented. Just like in the representation and implemen-
tation stage of the translation of computation, without an up-
date the model stays in the pre-trained state, never adapting to 
the new environment it is functioning in. Probably predicting 
on some data that has not much in common with the data that 
would be found in the situation at hand.
	 In the case of Washington’s schools, the model never fi-
gured out if it was right or wrong. It never got to update its 
pre-trained state. All the model did was evaluating teachers 
without ever getting feedback on its predictions. Like it is 
common with many implemented models, the training process 
stopped at the most important step. Actually re-evaluating the 
models predictions with a human to oversight it (O’Neil, 2017). 
But in this case the model predicted away and all years long 
the predictions were executed. The model’s will carried out 
and with that it was defining its own reality. A reality where 
the predicted score is the single source of truth.
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As it turned out, in the example of the value-added model, 
people also understood this mechanism and started exploiting 
it. Investigations by the Washington Post and USA Today later 
found out that many of the standardized tests were fabricated. 
Not by the students, but by their teachers. The teachers knew 
that higher scores of their students would prevent them from 
being fired (O’Neil, 2017). Knowing that there are only a few 
variables defining their future, they started to play along in the 
reality of the model. The reality of the model leaked into ours, 
actively manipulating how people would behave. This scheme 
of computational thinking sits at the core of today’s realities, 
highly influenced by how computers work. With the adaption 
of our thinking, we start to embody the model. Reinforcing 
its predictions into our lives. Onto our believes, onto our in-
tentions and onto our behaviour. The model has the ability to 
self-reinforce itself through us.

Sarah Wysocki was sure that the fabricated scores were the 
reason for her misclassification. At the time of the low assigned 
score she was teaching first year students of a middle school. 
Her suspicion was that the scores of the last year’s elemen-
tary school were inflated before, so when the student’s new 
tests were fed into the value-added model, it would predict a 
bigger score gap. Unfortunately she was not coming close to 
the real truth why the model behaved the way it did. In her in-
vestigation the school district could only give very vague ans-

wers, mostly referring to the “hard results” of its outsourced 
solution (O’Neil, 2017). But for Mathematica Policy Research 
it was nothing more than a shipped product. The model was 
never updated to deal with the actual data in its implemented 
environment. It is common that anti-procedures of obvious al-
gorithmic bias take place like this. The actual affected human 
being, most of the time being the exception in the dataset, is 
taking action against an algorithm, but in our information age 
it is not easy to appeal against a system based on “objective” 
math. As an emotional human being, there is no chance to ap-
peal against a system grounded in the rationalistic tradition.

The rationalistic orientation not only underlies both pure 

and applied science but is also regarded, perhaps because of 

the prestige and success that modern science enjoys, as the 

very paradigm of what it means to think and be intelligent. 

(Winograd and Flores, 1987, p. 16)

As long as the rationalistic tradition is the dominant way of 
how we think and treat each other, systems like IMPACT will 
not be held accountable for their actions. They will not even 
be looked at as a possible source of unfairness and discrimina-
tion. They will stay camouflaged and continue hiding behind 
the guardance of computational thinking.

Sarah Wysocki never got a justified answer that would explain 
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the algorithm’s decisions or why she lost her job (O’Neil, 2017).

To give another example of how models reinforce their beliefs 
into various fields of our societies, I want to display the in/fa-
mous phenomenon of predictive policing. Predictive policing 
programs emerged out of the Big Data field and are now, since 
several years, in great use all over the world (Friend, 2013). 
These crime prediction systems also mark machine learning 
as their main tool of success. The models use historical crime 
data as their input data and with that their predictions show 
where future crimes would most likely going to take place. Al-
though reports show a decline in property crimes and in parti-
cular burglaries, the question of “historical crime” interpreta-
tions arises (O’Neil, 2017). What exactly is the model looking 
at? And what are the implementation consequences? Who acts 
upon the calculated predictions?
	 In the specific example of PredPol, the self-acclaimed 
market leader in predictive policing, product owners have a 
choice on what kind of crimes to focus on, hence what kind 
of crime data will fill the dataset. In a freshly installed sys-
tem the software asks to also include so-called “Part 2” cri-
mes, being vagrancy, aggressive panhandling and selling, and 
consuming small quantities of drugs. While the system mostly 
works effective with “Part 1” crimes, being more severe cri-
mes like homicide, assault or burglary, the system’s fairness 
starts to descent with the inclusion of “Part 2” crimes, led by 

the “broken-windows” policing theory. The theory goes that 
environments, which look more careless or less maintained, 
hence the broken windows, would serve as a ground for more 
severe crimes. A house with a broken window would invite 
burglars. So people started to fix broken windows and to take 
more care of their environment. Unfortunately the movement 
eventually led to zero-tolerance campaigns, where police of-
ficers would stop and arrest low-level crimes, filling U.S. pri-
sons with numerous people convicted with victimless crimes 
(O’Neil, 2017).
	 Back to PredPol, the software works with the Google Maps 
web interface, displaying its predictions as 150 m2 boxes with 
red borders signaling high-risk areas. These areas resemble 
the area where a crime is most likely going to happen, so police 
officers are instructed to patrol these areas more often. With 
the “Part 2” crimes feature activated, neighborhoods of low-le-
vel crimes are becoming the hot-spots for patrolling. So when 
the police officer visits the predicted area and sees teenagers 
sharing a joint on the street or any other low-level, victimless 
crime, the officer will stop them. With that PredPol’s cloud 
would spin up and start evaluating the new captured data, 
which of course would be evaluated as a success, because the 
new location data point of the new crime would match within 
the predicted red bordered box. So the model would update 
its “patrol heat maps”, sending more patrols to the same area 
again leading to more reported crimes of that neighbourhood, 
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resembling another vicious self-reinforcement mechanism.

The policing itself spawns new data, which justifies more 

policing. (O’Neil, 2017, p. 87)

But what about the question of the dataset? Where is the cri-
me data coming from and on what interpretations are these 
models build upon? In the example of PredPol, the model is 
fed with the data points from the specific agency’s records ma-
nagement system (RMS). This system is a vast collection aka. 
database of previously filed crimes of the police department or 
district. A collection which resembles the numerous interpre-
tations of police officer from the past. Our models which are 
predicting and enforcing the future we will live in are based on 
interpretations from the past. And we all know that there are 
major parts of the history of our societies we wouldn’t like to 
repeat. The racist and discriminating past of police policing is 
one of them.
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But when did we start to predict the future based on computa-
tional systems? We always wanted to look into the future and 
computational systems looked like promising help. In 1922, 
computers as we know them today didn’t exist, but their ar-
chitecture and computational power were already dreamed of. 
In his writing “Weather Prediction by Numerical Process” the 
mathematician Lewis Fry Richardson made first attempts to 
compute the future. He did so by dividing the world into squa-
res and data points, trying to predict the weather with pen and 
paper. His six-hour forecast would take six weeks to complete. 
But to look into the future of the weather, calculations would 
have to be faster than the actual forecasting period. Eventu-
ally starting a race against time, trying to predict the future 
faster than it would arrive.
	 But with models from today in mind, did we really just 
want to look into the future? Or did we strive for control? Com-
putational systems have that control now, constructing future 
through the use of predictions, which are based on the past. 
With the use of historical data we are reinforcing the past, le-
aving no room for change. We are actively assuming that the 
past will linearly continue to be the future; without regarding 
that the future might have a different course than the past and 
without regarding that the future might have different values 
than the past. Computation blurred the lines between past and 
future, creating the most vicious feedback loop in the age of 
computation; the way things are will be the way things will be.
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Because mathematical models, by their nature, are based on 

the past, and on the assumption that patterns will repeat. 

(O’Neil, 2017, p. 38)

In this way, computation does not merely govern our ac-

tions in the present, but constructs a future that best fits its 

parameters. That which is possible becomes that which is 

computable. (Bridle, 2018, p. 44)

And is this really what we should be striving for? In the ex-
ample of PredPol and predictive policing the only computa-
ble data available was based on the previously cited crimes, 
which resembled a vast collection out of interpretations and 
observations from various police officers on patrol. And these 
observations were anything but fair and unbiased. Our past is 
inherently discriminating and we don‘t want that these discri-
minating patterns are reinforced into our future.
	 Staying with the example of predictive policing, a majori-
ty of the collected patrolling data was based on the so-called 
stop-and-frisk method. “Stop, question, and frisk” was one 
one the major anti crime policies of the New York City Police 
Department. The concept was the following: the more people 
you stop, the more crimes you can prevent. The idea was sim-
ple: police officers stopped anyone that looked suspicious to 
them. They asked for their ID and frisked them. The number of 
stops went up by 600 percent. And with the statistics showing 

a decline in crime, it was called a success. But an efficient sys-
tem is not always fair. The policy was later described as une-
ven policing, pushing more minorities into the criminal justice 
system. The administration, the method was running under, 
was sued by the New York Civil Liberties Union, charging the 
stop-and-frisk policy as being racist (O’Neil, 2017).
	 Taking a look at the dataset of the policy, which is publicly 
available on NYPD‘s website. For the year 2018, the dataset 
lists 11.009 stops in total, from which only 1.074 were of white 
people (New York City Police Department, 2019).
	 Continuing with the racist history of failed systems, let‘s 
take a look at computer vision systems. In the movie industry 
around the 1960s Kodak films were widely used and resemb-
led the industry standard at that time. Unfortunately the films 
were designed for people of white skin color, because the model 
posing for the Kodak test cards, which were used to calibrate 
the color films, happened to be white. The films were unusable 
for working with darker skinned people. The pictures would 
always turn out to be under-exposed. The most ironic part is 
that Kodak didn’t change their calibration methods. Kodak 
just didn’t update their model to work with darker tones. But 
when complaints, not being able to photograph chocolate or 
dark horses, were filed, only then Kodak reacted (Pater, 2016).
Another rather troublesome example is when Google‘s Photo 
app image classification algorithm failed and labeled two black 
people as “Gorillas” (@jackyalcine, 2015). In June 2015 @ja-
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ckyalcine tweeted about the incident, but all what Google did 
was to remove gorillas altogether from its model (Simonite, 
2018). More precisely, until this day (05.03.2019) Google still 
blocks all search queries for the tags “gorilla”, “chimp”, “chim-
panzee”, or “monkey” in its Photo app. Just because the pre-
trained model is not being updated; since almost 4 years now. 
Behind the app sits most probably the wide spread ImageNet 
dataset. ImageNet is an academic dataset, which provides a 
numerous set of images according to the labels of a database 
called WordNet. For each “synonym set” of WordNet, Image-
Net tries to provide an average of 1000 images. Browsing the 
explorer on the dataset’s website, taking a closer look at the 
node “People”, quickly shows the deficiency of black people, 
which is not representational and most probably leading to the 
misclassification of Google’s Photo app (ImageNet, 2019).

The phenomenon of automation bias shows a repeating pat-
tern, which can be observed in the use of computational sys-
tems. Again tightly connected to computational thinking, au-
tomation bias describes our unconditional love and trust in 
computational systems. In the national park in Death Valley, 
rangers came up with the term “Death by GPS”, because the 
event of people following the blue route until their death was 
occurring again and again. It might seem implausible, but the 
trust we have in our everyday algorithms, is astonishingly 
high. Another incident happened when a tourist group drove 

their car into a lake, because the navigation system told them 
too (Bridle, 2018).
	 Whether it is the dataset, the model, the app, or the blue 
route, we treat every stage of the design of computational sys-
tems as the single source of truth, resulting in an inevitable 
cascading waterfall of unpredictable bias.

The problem is not only in the semantic bias of the data set, 

but also in the design of the algorithm that treats the data 

as unbiased fact, and finally in the users of the computer 

program who believe in its scientific objectivity. (Cramer, 

2019, p. 33)

We build these highly optimized systems, but the underlying 
foundation is again and again disregarded. The same is hap-
pening in the discourse of algorithmic bias and machine lear-
ning. Most of the biases are not a new phenomenon of machine 
learning, they are inherently rooted in software development. 
The data that we feed our systems with is not looked at enough, 
and as we know from the translation of computation its the 
most crucial step, where all interpretations and observations 
take place.
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The story of the missing variable is an important one. As we 
know by now, the interpretation and observation question of 
what to include in a software model is crucial. Because of ma-
chine learning’s nature to be divided into several parts, being 
data mining, dataset normalization, dataset implementation, 
model definition etc., the significance of it is increased by a 
great deal. Interpretations are happening at every stage of the 
process, making it an opaque assemblage of potential biases. 
It is not only the bias that is actively embodied in the dataset, 
but also the exclusion of information, which shapes the bias. A 
transparent documentation of inclusion and exclusion beco-
mes necessary.
	 With that in mind it is necessary to look at the variables 
which were left out of the process. Although a data point was 
not included in a dataset, it can be of great significance for the 
model’s predictions. So in a sense a missing variable is never-
theless included into the model. The data point still exists in 
the real world, whether it was included in the model or not, 
and with that the model will have implications on it. And most 
of the times it is exactly that variable, which was chosen to be 
left out of the computational equation, that shows the most 
significant implications in the case of a breakdown.
	 In the case of Google’s Photo app, this is exactly what 
happened. The representation of people in the model’s dataset 
was not diverse enough. Black people were chosen to be the 
missing variable. And of course they were the most affected 
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ones by the incident. The unfortunate part from Google was 
that they didn’t fix the diversity of the dataset, but they went 
with deleting the misclassified labels, which just led to more 
exclusion and bias in the model.

While this explanation seems quite obvious, it is not that sim-
ple from the software developer’s point of view. It is always 
easy to see what is in front of you, hence what is being inclu-
ded into a system. Being decidedly critical with the situation at 
hand, to detect important variables which are being excluded 
from the observation and implementation, is hard. But bias 
will exist, whether it is intentional or unintentional. 
	 In statistics the intentional implementation of stand-in 
data, hence to substitute missing data points, are so-called 
proxies (O’Neil, 2017). In the development of models the ac-
tual interesting data is often missing, so the creators have to 
find a substitute for them. Other more accessible data points 
are looked for, which could resemble the actual desired varia-
ble, and are used to describe the new artificially created proxy. 
Proxies serve as a difficulty for the correctness and fairness of 
a model, since they add another layer of interpretation to the 
creation of the computational system. Proxies are by their very 
definition a short-cut or the easy way out, since they serve as 
a simplification of a part of the world which could not be mea-
sured or defined easily. And later in the process of evaluating 
the model or updating it, the proxy variables are hard to spot 

and redefine, since they are treated as usual variables in the 
model’s predictions. The model’s predictions which are based 
on an artificial extrapolation of the world around us.

Looking back at the example of Sarah Wysocki, it is clear what 
damage the implemented proxies did. A whole ability to teach 
students was reduced to a single score. The creators of the mo-
del just didn’t have the resources to explicitly define what it 
means to be a great teacher. They didn’t conduct much rese-
arch in the field of education or development of knowledge, 
because the already given computable data of the underlying 
value-added model was serving as an easily exploitable data 
point. Which ironically, was actually exploited by the people 
affected by the model. Just like the creators exploited a simpli-
fication of our reality, this simplification was identified by the 
outside and was used to trick the system. Not only are proxies 
a great danger to the actors being simplified, they also serve 
as an alarming attack surface to exploit the model. They are 
shortcuts in both ways.
	 The same happened to the racist PredPol model. Looking 
back at PredPol’s predictive policing model, the founder of the 
company, Jeffrey Brantingham, told O’Neil that

[...] the model is blind to race and ethnicity. [...] PredPol 

doesn’t focus on the individual. Instead, it targets geogra-

phy. (O’Neil, 2017, p. 86)
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Which PredPol’s website also confirms. They state that they 
only use three data points which are the type of crime, crime 
location, and the crime’s date and time (PredPol, 2019). But 
how comes that the inspected dataset from NYPD’s stop-and-
frisk policy, which is highly correlated to PredPol’s model, still 
shows a bias in favor of white people? This happens because 
the location data point is working as a perfectly fine proxy for 
race. In our segregated cities, your location is saying much 
about your ethnicity and social background.

To give another example of how proxies are used in a produc-
tion environment, I want to introduce another example from 
Cathy O’Neil’s research. In 1983 the news magazine “U.S. 
News & World Report” started to rank several major colleges 
and universities from the U.S and would publish its findings as 
“U.S. News Best Colleges Rankings”. In the beginning the list 
was solely based on an internal survey send out to university 
presidents. But as the complaints entered, the magazine nee-
ded to come up with a more sophisticated model. But again 
confronted with the fundamental question, on which data will 
the model be based on? They decided to stay with the survey 
and give it a 25 percent cut of the whole evaluation. The remai-
ning 75 percent would be the model trained on “educational 
excellence”. Of course “educational excellence” represented as 
a vast collection of proxies, which were debatable to represent 
the desired goal. Again the fundamental embodiment of the 

rationalistic tradition did its duty and U.S. News later defined 
“educational excellence” with SAT scores, student-teacher ra-
tios, acceptance rates, drop-out rates, and number of alumni 
who would actively contribute money. The complex reality was 
once again simplified to a bunch of computable data points 
(O’Neil, 2017).
	 Referring back to the importance of the missing variable, 
this particular model has a great confession to make: tuition 
fees were not included in the prediction of the model. Ever 
since the ranking went public tuition fees skyrocketed. Lea-
ving many students and families with depts in unimaginable 
amounts.
	 Nevertheless the ranking became a national standard and 
with that a much bigger problem arose. Just like it is often the 
case, the model reinforced itself. Because of the wide accep-
tance, the ranking became the new objective for all colleges 
and universities. Everyone wanted to be at the top of the list, 
because that‘s where everybody was looking at. And as we 
know from the nature of proxies, once they are implemented 
and out in the open, they will be exploited to practice deceit. 
And this is exactly what happened. The ranking turned into a 
race of who can trick the algorithm the best, where the value 
of education just didn‘t matter anymore.

But there is no need for us humans to put these shortcuts into 
our systems, with machine learning in the tool belt we are set 
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and ready to interpolate. Essentially machine learning is a pro-
xy producing gambling machine. With pattern recognition, we 
never know what we are going to get and how the importance 
weights of the various features will look like.
	 Looking back at our cat and dog classification project, I 
want to add another important step in the creation of the da-
taset. While preparing the dataset we would have to pay at-
tention to not create wrong correlations in the dataset. Let me 
explain what I mean by that: when taking the pictures of the 
cats and dogs, we would have to normalize them in a way, that 
the model would actually pick upon the features we want it to 
pick upon, meaning the visual difference between a cat and a 
dog; and nothing more. If we would decide to place all cats in 
front of an orange background and all dogs in front of a purple 
background, the model would essentially also assign the fea-
ture of a lot of orange pixels to cats and the feature of a lot of 
purple ones to dogs. So when we would place a dog in front of 
an orange background, the model would most probably, pre-
dict it to be a cat. While training the model, the classification 
can pick up very fine features, and there is no guarantee that it 
would be a feature which is in correlation with our initial goal, 
meaning there is no guarantee if the recognized pattern is a 
proxy or not; making pattern recognition a proxy producing 
gambling machine.

Machine learning does not distinguish between correla-

tions that are causally meaningful and ones that are inci-

dental. (Agüera y Arcas, Mitchell and Todorov, 2017)

The same is what probably happened to the model of the paper 
“Automated Inference on Criminality Using Face Images” of 
Xiaolin Wu and Xi Zhang, which was extensively analysed in 
the great article “Physiognomy’s New Clothes” by Blaise Agüe-
ra y Arcas, Margaret Mitchell and Alexander Todorov. Wu and 
Zhang’s paper states that they can predict

the likelihood that a person is a convicted criminal with ne-

arly 90% accuracy using nothing but a driver’s license-style 

face photo. (Agüera y Arcas, Mitchell and Todorov, 2017)

When having a closer look at the sample of the dataset provi-
ded in the paper, it doesn‘t need much to spot a clear classifi-
cation feature, which is not part of the face. All three people 
labeled as “non-criminal ID” are wearing a white collar shirt, 
being a way too easy catch for our proxy gambling machine.
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Hard-coded is an often referred to term in software develop-
ment. It describes a variable, expression or statement that is 
absolute. Absolute meaning, absolute to the context the pro-
gram is written in, and with that not relational or flexible to 
the environment. A hard-coded variable is set in the initial 
programming environment, and would break it, if the environ-
ment would be changed. It cannot adapt to a new implementa-
tion environment.
	 With the constant representation of the external world in 
writing software, human bias was so to say hard-coded into 
the program. The programmer’s prejudice and view of the 
world was directly hard-coded in it; it would be very explicit 
and concrete, and wouldn’t adapt to any new situations. If a 
programmer wanted to include a specific property of an object 
but not another one, it would be absolute, no matter the en-
vironment the software is going to execute in.
	 One could argue now that through the implementation of 
machine learning, the before defined absolute biases are not 
hard-coded anymore. The argument would be that they emer-
ge from the dataset, which was used to train the model, and 
with that they would emerge as generalized patterns of biased 
data. While this argument holds true within the supervised 
training process of a model, looking at the implemented and 
fitted model, the absolute nature of the dataset uncovers. The 
generalized patterns of the neural network camouflage the ab-
solute data points of the dataset as being relational variables. 
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After the training process is completed, the predictions of the 
model are absolute: a given x will always result in the same y, 
hence a given input will always result in the same output.
With that in mind, machine learning models are also hard-
coded, being inflexible and absolute. Just like the traditional 
software program, the model is curated by absolute statem-
ents of the programmer, being hard-coded into the context it 
was created in. Bias is and will always be hard-coded; hard-
coded by the human creating the piece of software.

Having looked at the emergence of algorithmic bias and how it 
manifests itself in software development, one coherent theme 
becomes apparent: there is no such thing as algorithmic bias 
per se; the occurrences of bias are diverse and vary in form 
and implementation. While the bias always finds its origin in 
the human, through computational systems it abstracted itself 
away from it and continues to live in different layers of our 
complex systems.

The term “algorithmic bias” or “biased algorithm” is mislea-
ding to the public. It reinforces the thought that the algorithm 
is biased itself. Just like in the whole process of its creation, 
it once again shifts the responsibility away from the human 
being. While the bias inherently becomes a property of the al-
gorithm itself, the term implies that it originated within the 
algorithm and deflects from the human creators building the 

systems.

Bias is inevitable and the hard part is not getting rid of it, but 
spotting where it enters our complex computational systems 
and to decipher the parts of the bias which are discriminating 
and are actively harming people.
	 To better define and locate the bias, I would propose clas-
sifying the term “algorithmic bias” into three main problems, 
which resemble the underlying domains where bias enforces 
in software. I see the bias in software development as an on-
tological problem, a technical problem and a reinforced prob-
lem. However, the separation doesn‘t imply that the domains 
work apart from each other. They are interdependent. In its 
manifestation, bias always exists as a hybrid out of these three 
problems/domains:

The ontological domain sits at the core of writing software. It 
juxtaposes computation with the limitations and preconcep-
tions of human perception. With the work of Gadamer, Ma-
turana and Heidegger it describes the fallacies of interpreta-
tion and representation. Their concepts of the hermeneutic 
circle, the fallacy of instructive interaction and thrownness 
play a vital role within the context of the inevitable human 
bias while observing and formulating the physical and relatio-
nal world around us.
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The technical domain defines computation’s origin within the 
rationalistic tradition. It states the fundamental and binding 
technical bias of computational systems. Code itself is not neu-
tral nor objective. It exists as a highly rational medium, which 
creates and favors a specific way of thinking and way of being. 
Within the advanced rationalistic tradition of today, rational 
thinking is not only favored, but the only option specified by 
the computational systems. The domain questions the deeply 
implemented rational fundament software is compiling onto.

The reinforced domain is the layer which functions as a catalyst 
to the underlying problems and limitations. It commonly con-
sists of abstracted computational concepts based on existing 
computational systems, reinforcing the rationalistic tradition 
and practising highly complex hermeneutic methods. Through 
the reinforcement the previous domains gain a protecting lay-
er, making them more opaque, less accessible and less change-
able. The technologies used to reinforce the previous domains, 
develop means on their own to further stimulate the needs of 
the rationalistic tradition and its consequences. Because of the 
cascading reinforcement the direct implications of computati-
on become increasingly incomprehensible.

Within these three domains bias doesn’t exists as a static de-
finition or limitation per se; it exists as a dynamic process, 
which gradually emerged within the computational systems; 

historically and practically speaking. With the ever cascading 
and accumulating interpretations, formulations and represen-
tations in software development, bias is not only a single pro-
perty with destructive consequences, but it can also be seen as 
a temporal course and thus be defined as a process. A process 
which needs to be acknowledged to reflect onto our ontolo-
gy to increasingly understand who we are and how limiting 
we perceive the world around us. A process which needs to be 
constantly updated to synchronize the world with the created 
rational abstractions. And a process which needs to be trans-
parent to disclaim the decision making of inclusion and exclu-
sion to the computational affected environment.

HARD-CODED



The accompanying practical work is the creation of a concep-
tual dataset. It finds its purpose in communicating and explo-
ring the concept of classifying a spectrum. It is juxtaposing 
the unacknowledged and unrecognized spectrums occuring 
within the interpretations and representations of software 
development with the widely acknowledged visible electroma-
gnetic spectrum. Within the act of classifying a spectrum the 
work reflects on the rationalistic practises and techniques it 
takes to make our complex world quantifiable.

Sticking to the rather materialist view and how it is giving the 
tool itself the property and power to shape human behaviour 
and thinking, my work finds appeal in this approach, giving 
the tool the possibility to change its way of being used. The 
definition of a tool is pre-defining the way it is used and un-
derstood. The tool’s values are hard-coded into its creation.
With that in mind I redefine the technique of machine learning 
to the pattern recognition of human bias. Changing the initial 
perspective and incentive of machine learning takes the ma-
terialist approach and redefines machine learning’s function.

1.	 From hard-coded human bias to generalized patterns of 
biased data

2.	 Normalized data with human bias into pattern recogni-
tion
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3.	 Machine learning as pattern recognition of human bias

These two approaches use the technological practical juxtapo-
sition of machine learning to learn and reflect onto our limit-
ations and reinforcements within the previously stated do-
mains. The transduction throughout the three domains give 
us the opportunity to explore human bias within and through 
machine learning.

Within this technical documentation I give insight in my 
constant subjective decisions that occurred while creating the 
computational environment around the practical work.

The work is a new media installation which finds its origin wi-
thin web development. The starting point of the installation 
is the interface which is used to define and gather the dataset. 
The interface is a simple website which consist out of three 
main parts: classification, dataset and writing.
	 The classification starts with the generation of a random 
color. Within the function setColor(), three floored numbers 
between 0 and 255 are generated. They resemble the three 
channels of the RGB color model, being red, green and blue, 
which is a widely used additive color model to generate colors 
in electronic systems.

const r = Math.floor(Math.random() * 256)
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const g = Math.floor(Math.random() * 256)

const b = Math.floor(Math.random() * 256)

From these three variables a new object color is being created 
to define a string which is then used to display the color via the 
Cascading Style Sheet property background. The raw string of 
the red, green and blue values is also synced to an input field 
below the generated color to work as the input for the predic-
tions of the trained model.

this.color = {

  r: r,

  g: g,

  b: b

}

this.ui.rgb = `${ this.color.r }, ${ this.color.g }, 

${ this.color.b }`

Below the generated color and the RGB string input field, is 
the list of possible color labels to pick from. The user visiting 
the website classifies the generated color, with assigning one 
of the labels to it. When one of the color labels is clicked, the 
generated color value with the according color label are gathe-
red and prepared to be stored in the dataset. After a simple 
validation, which handles possible misuse of the input fields of 
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labels, the function sendColor() sends out the new data point 
with instructions to the backend of the application.

const msg = {

  do: ‘insert-color‘,

  data: {

    label: label,

    color: this.color

  },

  client: this.client

}

Looking at the object from down to top, the client key is a 
unique identifier which is automatically generated on visiting 
the website. The data key holds another object with the gene-
rated data points including the label with the according values. 
The color key resembles the x value, while the label key stand 
for the y value, which are later being used for the supervised 
training process. The do key of the object gives the receiving 
server the instructions on how to handle the incoming data. 
In this case the string insert-color tells the server that it is a 
newly generated data point which should be inserted into the 
dataset. A timestamp and a unique id are added to the entry in 
the database.
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{

  “data“: {

    “label“: “violet“,

    “color“: {

      “r“: 203,

      “g“: 85,

      “b“: 184

    }

  },

  “client“: “62e77608efb71“,

  “timestamp“: 1545934945977,

  “_id“: “b5GjklTlfQjtaQzt“

}

If a generated color cannot be described or classified within 
the given labels, the user has the ability to add a new label via 
a second input field, which is then available to further classifi-
cations. With that the dataset’s diversity of y values is flexible 
and updateable.

The second area of the website gives the ability to interact with 
the application programming interface of the curated dataset. 
It gives insight in the gathered data points and visualizes them 
accordingly. After selecting a color label from the dropdown, 
the server selects all matching data points and sends them 
back to the client. The website then renders the received data 

TRANSLATION OF COMPUTATION



81

CLASSIFYING A SPECTRUM AND
THE PATTERN RECOGNITION OF HUMAN BIAS

points, with their corresponding color values, on the screen, 
giving a visual representation of the classified data. Each data 
point is clickable, revealing the underlying entry of the data-
set as a direct copy from the database. The end points of the 
application programming interface are open and completely 
accessible to the public.

The writing area shows paragraphs of text consisting out of 
excerpts of this writing to give the project more context and 
to explain the theoretical background. Before the paragraphs 
are rendered onto the screen, the excerpts are manipulated by 
a regular expression script to properly display literature refe-
rences and to enable basic syntax highlighting.

On the server-side the machine learning model is being trained 
in variable intervals. The standard value to retrain the model 
is every 100 new data points. Everyday at 3:00 AM the model 
is saved in an archive directory to document the process of 
the training process. The intervaled retraining guarantees the 
frequent synchronization between the model and its environ-
ment. The model itself is build with Google’s open source ma-
chine learning library Tensorflow.js. It is a standard sequential 
neural network with three layers. The network’s architecture 
consisting out of the first layer having an input shape of three 
to resemble the three values of a color data point, the output 
layer adapting to the current amount of color labels in the da-
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taset and the hidden layer varying its amount of units to give 
the network enough space to pick upon the features.

const model = tf.sequential()

const hidden = tf.layers.dense({

  units: 16,

  activation: ‘sigmoid‘,

  inputShape: [3]

})

const output = tf.layers.dense({

  units: 6,

  activation: ‘softmax‘

})

Within the website and on the initial page load the latest mo-
del is downloaded. The red, green, blue value input field is edi-
table and serves as the input value of the model. When the 
input field is focused the model extracts the three values and 
displays the predicted label based on them. 

The installation setting consist out of an input device and 
several output devices. The input device is an Apple iMac G3 
displaying the described interface to gather new data points 
during the exhibition. The almost 20 year old computer should 
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resemble the manifestation of the technical domain, which 
also includes limiting interfaces and input methods. The 
output devices are recycled computer monitors powered by 
Raspberry Pis. They show a comparison of datasets and give 
contextual insights in technical process and the underlying 
theoretical work. The installation function as a live classifica-
tion of human bias.

The full source code can be found on https://github.com/
cccccccccccccccccnrd/translation-of-computation
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